
www.manaraa.com

University of Iowa
Iowa Research Online

Theses and Dissertations

Spring 2016

Pushing the boundaries: feature extraction from the
lung improves pulmonary nodule classification
Samantha Kirsten Nowik Dilger
University of Iowa

Copyright 2016 Samantha Kirsten Nowik Dilger

This dissertation is available at Iowa Research Online: http://ir.uiowa.edu/etd/3071

Follow this and additional works at: http://ir.uiowa.edu/etd

Part of the Biomedical Engineering and Bioengineering Commons

Recommended Citation
Dilger, Samantha Kirsten Nowik. "Pushing the boundaries: feature extraction from the lung improves pulmonary nodule
classification." PhD (Doctor of Philosophy) thesis, University of Iowa, 2016.
http://ir.uiowa.edu/etd/3071.

http://ir.uiowa.edu?utm_source=ir.uiowa.edu%2Fetd%2F3071&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ir.uiowa.edu/etd?utm_source=ir.uiowa.edu%2Fetd%2F3071&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ir.uiowa.edu/etd?utm_source=ir.uiowa.edu%2Fetd%2F3071&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/229?utm_source=ir.uiowa.edu%2Fetd%2F3071&utm_medium=PDF&utm_campaign=PDFCoverPages


www.manaraa.com

 

 

 

 

 

 

 

PUSHING THE BOUNDARIES: FEATURE EXTRACTION FROM THE LUNG 

IMPROVES PULMONARY NODULE CLASSIFICATION 

 

 

 

 

 

 

 

 

by 

 

Samantha Kirsten Nowik Dilger 

 

 

 

 

 

 

 

 

A thesis submitted in partial fulfillment 

of the requirements for the Doctor of Philosophy  

degree in Biomedical Engineering in the  

Graduate College of 

The University of Iowa 

 

May 2016 

 

Thesis Supervisor:    Assistant Professor Jessica C. Sieren 

 

  



www.manaraa.com

Graduate College 

The University of Iowa 

Iowa City, Iowa 

 

 

 

 

 

CERTIFICATE OF APPROVAL 

 

____________________________ 

 

 

PH.D. THESIS 

 

_________________ 

 

This is to certify that the Ph.D. thesis of 

 

 

Samantha Kirsten Nowik Dilger 

 

has been approved by the Examining Committee for  

the thesis requirement for the Doctor of Philosophy degree 

in Biomedical Engineering at the May 2016 graduation. 

 

 

Thesis Committee: ____________________________________________ 

 Jessica C. Sieren, Thesis Supervisor 

 

 

 ____________________________________________ 

 Joseph M. Reinhardt 

 

 

 ____________________________________________ 

 John D. Newell, Jr. 

 

 

 ____________________________________________ 

 Eric A. Hoffman 

 

 

 ____________________________________________ 

 Punam K. Saha



www.manaraa.com

ii 

 

ACKNOWLEDGEMENTS 

 

This work would not be possible without the contributions of many. I would like 

to acknowledge my thesis advisor and mentor, Dr. Jessica C. Sieren. Without her guidance 

and support, I would not have had this incredible opportunity to continue my education, 

deepening my understanding of image processing, pattern recognition, and the clinical 

impacts. She has also been a mentor outside of research, encouraging me to explore 

teaching avenues, mentoring, service work, and work-life balance. 

I want to express my gratitude to my committee members: Dr. Joseph M. 

Reinhardt, Dr. John D. Newell, Jr., Dr. Eric A. Hoffman, and Dr. Punam K. Saha. This 

project has benefited from your unique experiences, teachings, and areas of interest to 

guide the direction of this work. I would like to thank the members of the Advanced 

Pulmonary Physiomic Imaging Lab, including Krishna Iyer, Emily Hammond, and 

Abhilash Kizhakke Puliyakote for their feedback along the way.  

I would specifically like to thank Deb O’Connell-Moore, Mark Escher, Allen 

McGruder, Dr. Michael Gailey, Monika Ahuja, Frank De Stefano, and Nicholas Koehn for 

their help in data collection and preparation. Thank you, Dr. Brian Smith and Sarah Bell, 

for your statistical support. I would like to thank Johanna Uthoff for her contribution to 

this project. In particular, her assistance with the clinical dataset and segmentation was 

invaluable. Finally, I would like to thank my husband, daughter, and family for their 

support and encouragement.  



www.manaraa.com

iii 

 

ABSTRACT 

 

Lung cancer is the leading cause of cancer death in the United States. While the 

introduction of low-dose computed tomography (CT) screening has been shown to reduce 

lung cancer mortality by 20%, 97% of the suspicious lesions are found to be benign upon 

further investigation. Tools which can improve the specificity of CT-based screening at 

the time of image acquisition are desperately needed to decrease stress to the patient, 

avoid unnecessary radiation exposure or invasive testing, and increase cost efficiency. 

However, the limited amount of CT data voxels available in early identified, small (4-

10mm) nodules presents a significant challenge for traditional pulmonary CT computer-

aided diagnosis (CAD) tools which focus on feature extraction from only the nodule. We 

hypothesize a CAD tool that incorporates quantitative CT features from the surrounding 

lung parenchyma will improve the ability of a CAD tool to determine the malignancy of a 

pulmonary nodule over a CAD tool that relies solely on nodule features. 

To test this hypothesis, we have developed a CAD approach that includes 

comprehensive intensity and texture feature extraction from the nodule and surrounding 

lung parenchymal tissue. We also include shape and boundary features that are minimally 

dependent on the preliminary nodule segmentation. Using this CAD approach, we 

designed two CAD tools: a research-driven lung quantification tool and clinically-

focused, lung cancer screening tool robust to variations in protocol. These CAD tools 

were optimized for their respective datasets by exploring alternative classifiers, varying 

amounts of surrounding parenchyma, and the inclusion of other risk factors. In addition 

to use as a nodule prediction tool, preliminary clinical impact studies were performed 

using the optimized CAD tools by looking at alternative thresholding approaches and 

longitudinal nodule prediction. 
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For the research-driven CAD tool, a cohort of 50 (18 malignant, 32 benign) 

nodules from two clinical trials were identified. The optimal research CAD tool utilized 

the parenchyma information located within a distance of 50% of the nodule’s diameter. 

Other valuable information came from the nodule and measures of lobar and whole lung 

structure. The performance of this CAD tool supports our hypothesis; a 5% improvement 

in accuracy was achieved with the complete feature set (95.6%), compared to the 

accuracy achieved with the nodule features alone (90.2%). 

The clinical CAD tool was constructed with a retrospective clinical cohort of 199 

nodules (109 malignant, 90 benign), divided into a 133-case training set (72 malignant, 

61 benign) and a 66-case testing set (37 malignant, 29 benign). The optimized CAD tool 

was constructed using a least absolute shrinkage and selection operator (lasso) penalized 

logistic regression model and relied on nodule and parenchyma features, as well as 

clinical risk factors such as age and smoking history. The performance of this CAD tool 

was very promising, with a testing accuracy of 71% (47/66).  

When three classes (definite malignant, definite benign, and indeterminate) were 

used, both CAD tools showed a decrease in the number of clinical follow-up procedures 

such as repeated imaging required (research CAD tool reduction: 30-85.7%, clinical 

CAD tool reduction: 12.1%). In the longitudinal trials, the CAD tools showed potential in 

reducing the follow-up procedures for benign nodules. 

The inclusion of parenchymal features in the developed CAD tools resulted in 

improved performance compared to the CAD tool constructed solely with nodule 

features, supporting our hypothesis. We have further optimized these CAD tools by 

exploring the optimal amount of parenchyma for feature extraction and have 

demonstrated the potential of these CAD tools to positively impact clinical care. 
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PUBLIC ABSTRACT 

 

Lung cancer is the leading cause of cancer death in the United States. While low-

dose computed tomography (CT) screening reduces lung cancer mortality by 20%, 97% 

of suspicious lesions are found to be benign upon further investigation. Computer-aided 

diagnosis (CAD) tools can improve the accuracy of CT screening, however, current CAD 

tools which focus on imaging characteristics of the nodule alone are challenged by the 

limited data captured in small, early identified nodules. We hypothesize a CAD tool that 

incorporates quantitative CT features from the surrounding lung parenchyma will 

improve the ability of a CAD tool to determine the malignancy of a pulmonary nodule 

over a CAD tool that relies solely on nodule features. 

Using a higher resolution research cohort and a retrospective clinical cohort, two 

CAD tools were developed with different intentions. The research-driven CAD tool 

incorporated nodule, surrounding parenchyma, and global lung measurements. 

Performance was improved with the inclusion of parenchyma and global features to 

95.6%, compared to 90.2% when only nodule features were used. The clinically-oriented 

CAD tool incorporated nodule and parenchyma features and clinical risk factors and 

identified several features robust to CT variability, resulting in an accuracy of 71%. 

This study supports our hypothesis that the inclusion of parenchymal features in 

the developed CAD tools resulted in improved performance compared to the CAD tool 

constructed solely with nodule features. Additionally, we identified the optimal amount 

of lung parenchyma for feature extraction and explored the potential of the CAD tools in 

a clinical setting.  
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optimized N+50%+R LR classifier. 4 of the 12 benign nodules 

were classified as definite benign, reducing follow-up for these 

participants. ........................................................................................................... 83 
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CHAPTER I 

INTRODUCTION 

Lung cancer is the leading cause of cancer-related death for both men and women 

in the United States, despite being the second-most frequent cancer diagnosis for both 

sexes. According to the National Cancer Institute, the age-adjusted incidence rate of lung 

cancer was 58.7 per 100,000 people per year, resulting in an estimated 221,200 new cases 

of lung cancer in 2015 [3]. While the five-year survival rate of lung cancer is low 

(17.4%), survival drastically improves when diagnosed in the localized stage (54.8%) [3]. 

This significant improvement in survival with earlier diagnosis has led to the 

development and implementation of screening for high-risk, asymptomatic individuals 

such as current and former smokers. The National Lung Screening Trial (NLST) 

compared two such screening techniques – projection radiograph and chest computed 

tomography (CT) imaging. This study demonstrated that high-risk individuals screened 

for lung cancer with volumetric CT imaging had a 20% relative reduction in mortality 

rate compared to those screened with chest radiograph [4]. This reduction in mortality is 

attributed to participants in the CT cohort receiving earlier stage diagnosis and treatment. 

However, 96.4% of the CT findings marked as suspicious for lung cancer were found to 

be benign upon further evaluation [5], and the improved resolution of CT has resulted in 

a significant increase in the number of small (4-10mm), often benign, pulmonary nodules 

detected. These false positives and indeterminate nodules result in unnecessary repeated 

CT imaging and/or invasive follow-up procedures, incurring additional emotional stress 

for the patient and increasing healthcare costs. 

In an effort to improve the specificity of CT lung cancer screening while 

maintaining the improved sensitivity, a computer-aided diagnosis (CAD) tool can be 

designed to determine the probability of malignancy of a lung nodule based on objective 

measurements, or features. While many researchers have worked to develop CAD tools 
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for lung nodules, these CAD tools focus on properties of the nodule alone, leading to 

little CT data available from the voxels of small (4-10mm) nodules. Additionally, these 

studies neglected examination of the nodule’s interaction with the surrounding lung 

parenchyma.  We hypothesize that a CAD tool that utilizes quantitative CT (QCT) 

features from the surrounding lung parenchyma to determine the malignancy of a 

pulmonary nodule will outperform a CAD tool trained exclusively with data collected 

from the nodule alone. The inclusion of intensity and texture features from the lung 

parenchyma as well as nodule border characteristics will increase the amount of data 

available for classifier training without requiring additional imaging or follow up 

procedures for the patient. 
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CHAPTER II 

BACKGROUND INFORMATION 

2.1 Lung Cancer 

While lung cancer is the second-most common cancer diagnosis of men and 

women in the United States, it is the leading cause of cancer death. For 2008-2012, the 

age-adjusted incidence of lung cancer in the US was 58.7 per 100,000 people per year; 

however, the age-adjusted mortality rate was 47.2 per 100,000 people per year [3]. The 

high rate of death relative to the incidence rate of lung cancer is strongly associated with 

the stage of cancer at diagnosis. While small cell lung cancer can also be staged by 

treatment types, both small cell and non-small cell lung cancers, such as 

adenocarcinomas and squamous cell carcinomas, are staged based on three criteria: the 

size of the tumor (T), lymph node involvement (N), and distant metastases (M) [6]. These 

stages describe the severity of the cancer and help guide therapy. While Stage I and II 

cancers are localized to the lungs alone or to the nearby lymph nodes, Stage III cancers 

describe more advanced disease in the chest as lymph nodes further from the initial tumor 

are affected. The size of the tumor is also important, with greater size leading to 

increasing stage. Stage IV describes the most advanced stage of lung cancer, where 

cancer has metastasized outside the lung [7]. The stage at which lung cancer is diagnosed 

affects not only treatment, but it also plays a role in patient prognosis. 

The five-year relative survival rate for Stage I lung cancer is 54.8%; 

unfortunately, only 16% of cases are diagnosed when the cancer is in this localized stage. 

More than half of lung cancer cases (57%) are not diagnosed until after the primary 

tumor has metastasized during Stage IV disease, with a five-year survival rate of 4.2%; 

while 22% are diagnosed after the cancer has spread regionally in Stage II and III with a 

reduced five-year survival rate of 27.4%. Across all stages of lung cancer, the five-year 

relative survival rate is 17.4% [3]. As the majority of lung cancers are diagnosed after 
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metastasis, improvements in early lung cancer diagnosis are required to improve lung 

cancer survival. 

2.2 Lung Cancer Screening 

Due to the advanced stage of diagnosis when the nonspecific symptoms of lung 

cancer (weight loss, fatigue, cough, hemoptysis, and shortness of breath) are recognized, 

regular screening of asymptomatic high-risk populations, including current and former 

smokers, is indicated. Several types of screening have been tested including sputum 

testing, chest projection radiograph, and chest CT. While sputum testing and chest 

projection radiograph screening have not led to a reduction of mortality rates by lung 

cancer [8, 9], the use of low-dose CT (LDCT) as a screening tool has been shown to 

reduce lung cancer mortality by 20% relative to chest projection radiograph [4]. Further, 

in December 2013, the U.S. Preventive Services Task Force issued a statement 

recommending the use of LDCT for annual screening for asymptomatic adults (55-80 

yrs) with a 30 pack-year smoking history and who currently smoke or have quit within 

the past 15 years [10]. On February 5, 2015, the Centers for Medicare & Medicaid 

Services (CMS) determined that, for beneficiaries meeting certain eligibility criteria, 

annual LDCT screening for lung cancer will be provided as an additional preventive 

service benefit under the Medicare program [11]. The introduction and inclusion of an 

insurance-covered screening program presents concern for a large increase in false-

positives identified in LDCT, lesions that appear either as suspicious or too small to 

characterize that are found to be benign upon further follow-up. In the NLST, 96.4% of 

the CT findings marked as suspicious for lung cancer were found to be benign upon 

further evaluation [5], leading to repeated imaging tests, invasive procedures, and 

increased patient stress and healthcare costs. 
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2.3 Indeterminate Nodule Follow-up 

The National Comprehensive Cancer Network® has generated an evaluation and 

follow-up plan for lesions identified on LDCT screening [12]. Specifically for a solid or 

part solid nodule identified within a LDCT screening scan, the follow-up procedure 

utilized is dependent on the size of the nodule (Figure 1). For nodules 6-8mm or >8mm in 

mean diameter, repeated imaging is often the first step in nodule evaluation, followed by 

biopsy or surgical resection. In repeated imaging, an increase in size is the primary 

criteria for intervention. Especially for these small 6-8mm nodules, a true increase in 

mean diameter of ≥2mm – the size increase for which further action, such as surgical 

resection, is recommended – can be difficult to detect, based on intra- and inter-reader 

variability, repeated scans, and measurement method [13, 14]. With the large increase in 

patients eligible for lung cancer screening and the high rate of false positives detected in 

LDCT, all identified nodules, but especially the smaller, sub-centimeter nodules, will 

continue to be a major clinical problem. 

Several groups have sought to improve the specificity of LDCT by incorporating 

sputum testing into the screening pipeline. Burfeind Jr. et al. found the use of 

fluorescence in situ hybridization (FISH)-based sputum test after a nodule has been 

detected on LDCT to have great promise, with a positive concordance of 81.8% and a 

negative concordance of 91.7% to biopsy-confirmed nodules [15].  Molina et al. 

compared the performance of a clinical prediction model utilizing nodule size, age, and 

smoking status to a clinical model that also incorporated serum tumor markers. This 

study found an increase in performance, measured as area under the receiver operating 

characteristic (ROC) curve (AUC), when tumor markers were included from 0.85 to 0.93 

[16]. Shen et al. incorporated microRNA biomarkers after LDCT and saw in increase in 

specificity to 91.8% compared to 83.6% with CT alone [17]. However, these studies 

require an additional sputum test to be performed in order to obtain improvement in 

nodule classification; while noninvasive, this test results in additional healthcare cost and 
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time before nodule diagnosis and subsequent treatment. Improvement in nodule 

classification based solely on LDCT collected information would be the optimal solution 

as it would not require increase in cost, additional procedures, or additional radiation 

exposure due to repeated imaging, and would ideally require only a minimal increase in 

scan processing time. 

 

2.4 Computer-Aided Diagnosis Tools 

In an effort to reduce the number of false-positives, a computer-aided diagnosis 

(CAD) tool can be designed to determine the probability of malignancy of a lung nodule 

based on objective measurements, or features. CAD tools have the potential to improve 

the accuracy of nodule classification (likely malignant or benign) by acting as a second 

reader to radiologists [18, 19]. CAD tools consist of two pathways (Figure 2). In the 

training pathway, features are extracted from regions of interest with known outcomes, 

analyzed, and selected for best classification. These selected features are then used to 

Figure 1. NCCN guidelines for the evaluation of solid or part solid nodules found during 

lung cancer screening. Note the frequent use of repeated imaging and/or 

invasive procedures to determine nodule diagnosis. 
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train the classifier. The testing pathway takes a region of interest with an unknown 

outcome. The features selected in the training pathway are extracted from the unknown 

region of interest and passed to the classifier, resulting in the predicted outcome [1]. 

Developing a CAD tool to identify lung cancer is a topic that has been explored in 

many ways; however, current CAD approaches have focused on the lung nodule itself. In 

reviewing the current literature, size, intensity, shape, texture, and location of the nodule 

have all been found to be significant features in determining the diagnoses of lung 

nodules [19-38]. Several methods have been used to characterize the shape of the nodule 

including sphericity [22, 31] and compactnesss [25, 31], as well as qualitative descriptors 

of polygonal shape [21, 32], edge characteristics [20, 33, 34], and the presence of 

spiculation [19, 21, 23, 27]. The texture of the nodule has also been quantified through 

different techniques, such as co-occurrence matrix-based parameters, run-length 

statistics, and fractional Brownian motion [21, 29, 30, 36, 37]. Texture has also been 

determined through a radiologist scoring system [22]. While some of these features are 

readily computed from the regions of interest, such as attenuation properties [24, 31, 35], 

volume and size [25, 33, 34], and sphericity [22, 31], other features have been specified 

based on user input – such as the presence of spiculation [19, 21, 26, 27] and how well-

defined the margins of the nodule are [23, 28]. CAD tools for lung cancer have also been 

Figure 2. CAD tool pathway. The top row illustrates the training pathway which 

identifies the features for classification and trains the classifier. The bottom 

row, the testing pathway, processes new regions of interest through the trained 

classifier [1]. 
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extended beyond physiological characteristics, utilizing convolutional neural networks 

and deep belief systems to classify pulmonary nodules [38].  The common measures of 

performance include accuracy, sensitivity, specificity, and AUC. Performances for these 

CAD tools range greatly, from accuracies of 70.0% [22] to 90.0% [30] and AUC values 

ranging from 0.83 [34] to 0.96 when the CAD tool was used in conjunction with a 

radiologist [23]. In summary, the majority of features used in classification have been 

derived only from the nodule, despite the fact that the nodule interacts with the 

surrounding parenchyma. 

2.5 Project Hypothesis 

The volumetric data from CT imaging facilitates the detection of very small 

pulmonary nodules (4-10 mm) which require follow-up, often with repeated CT imaging 

to track nodule growth as an indicator of malignancy. A sensitive CAD tool able to 

identify nodules as very low risk for malignancy would minimize repeated CT imaging 

and hence radiation exposure, as well as invasive procedures, in this population. 

However, for small pulmonary nodules, there are few CT data voxels within the solid 

tumor, making them difficult to process through traditional CAD tools. We hypothesize 

that improvement will be seen in the quantitative CT (QCT) CAD classification of lung 

nodules by including the lung parenchyma surrounding the nodule in the region of 

interest. Incorporating the surrounding lung tissue in the region of interest contributes 

insight into the differences between how malignant and benign nodules interact with the 

adjacent lung parenchyma while also increasing the amount of data (voxels) available to 

the CAD tool. 

In developing the CAD tool, the use of CT images obtained using a diverse 

background of scan parameters will be explored, in an effort to identify imaging 

biomarkers of disease that do not rely on a strict imaging protocol. By training a CAD 

tool based on these parameter-invariant features, the tool will be more amenable to a 
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clinical setting, where it might be used on nodules identified in a screening program with 

a set protocol or for incidentally identified nodules during other imaging procedures.  

As with reducing reliance on imaging protocol, features that reduce reliance on 

segmentation of the nodule are also desired. Due to the subjectivity of manual and semi-

automated segmentations and differing algorithms behind automated segmentation tools, 

features that are robust to nodule tracings are ideal. 

To explore our hypothesis we have developed three specific aims: 

Aim 1: Develop and test a CAD tool that utilizes QCT features derived from the 

surrounding parenchyma in both a high CT resolution research cohort and a retrospective 

clinical cohort with greater variance in CT resolution and acquisition parameters. 

Aim 2: Determine the impact of including parenchymal features by identifying 

the optimal amount of parenchyma surrounding a nodule to include in the CAD tool. 

Aim 3: Explore the potential clinical impact of a CAD tool that includes 

parenchymal features in providing an early prediction of malignancy and minimizing 

follow-up imaging and procedures in the cohort with benign nodules. 
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CHAPTER III 

DATASET COLLECTION 

3.1 Rationale 

In order to develop an accurate and effective CAD tool, a dataset with known 

outcomes is needed. As described above, two CAD tools are being developed: a high 

resolution, lung quantification tool and a low dose, lung cancer screening tool. To train 

these tools, two cohorts were collected. The first cohort, the high resolution, research-

targeted dataset was collected from two imaging research studies specializing in lung 

imaging. The second cohort was collected from retrospective clinical chest CT imaging 

with a wide range of parameters to determine the limitations of CT variability in CAD 

performance. 

3.2 Methods 

3.2.1 Research Cohort 

Two previous National Institutes of Health (NIH) funded imaging research studies 

were available to us for retrospective dataset collection with institutional review board 

approval. CT and demographic data were collected as part of these parent studies. First, 

the University of Iowa Hospitals and Clinics was a participating site in the National Lung 

Screening Trial (NLST). Hence, the Iowa cohort of NLST was the perfect starting place 

for developing a database of nodules with pathological diagnoses. Participants were 

screened annually for three years or until a malignant lung nodule was identified. Lung 

cancer diagnoses were tracked as a part of the primary study outcomes. By querying the 

Iowa cohort of the NLST, participants with either a malignant solitary pulmonary nodule 

(SPN) diagnosed within 3 months of an imaging timepoint or a benign SPN after all three 

imaging timepoints were identified. 
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 Additionally, the Chronic Obstructive Pulmonary Disease Genetic Epidemiology 

(COPDGene) study is one of the largest investigations into the factors of Chronic 

Obstructive Pulmonary Disease (COPD) [39], with twenty-one clinical study centers 

across the United States. 10,000 participants were, and continue to be, imaged with CT. 

As there is a strong association between COPD and lung cancer [40], this study was 

another suitable database for potential cases. While not the primary goal of the study, an 

ongoing ancillary study called the COPDGene Lung Cancer Registry has been 

established to track participants with malignant nodules. Participants with SPNs 

identified from Phase I were identified. This list was cross-compared with the Lung 

Cancer Registry to identify participants with confirmed malignant disease. As part of 

Phase II of COPDGene, the participants returned for repeated imaging approximately five 

years after their first timepoint. For those participants with a SPN identified on their 

Phase I scan who were not registered with the Lung Cancer Registry, the Phase II scans 

were referenced to assess the SPN for 5-year stability. Nodules were assessed using the 

Response Evaluation Criteria in Solid Tumors (RECIST) [41]. Stability was defined as: 

(a) the SPN resolved and no nodule was located, (b) the SPN showed a decrease in size 

measured by maximum (RECIST) diameter, or (c) the SPN’s maximum diameter 

remained constant between the two scans. 

3.2.2 Clinical Cohort 

With University of Iowa institutional review board approval, retrospective clinical 

cases were identified. Radiology and pathology reports from 2008-2014 with the phrase 

“pulmonary nodule” or “pulmonary nodules” were identified. These potential cases were 

further data-mined through the electronic health record system (Epic Systems, Verona, 

WI) to isolate participants meeting the following criteria: (a) radiologic presence of SPN 

(5-30mm) on CT and (b) true-benign or primary lung cancer confirmed by pathology or 

two year stability. 
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3.3 Results 

3.3.1 Research Cohort 

 In total, 55 SPNs were identified from the NLST and COPDGene clinical trials 

(see Table A 2 for list of study identification numbers). From the Iowa cohort of the 

NLST, 14 cases were identified, 6 malignant and 8 benign, with diagnoses confirmed 

through pathology. The remaining 41 cases, 14 malignant and 27 benign, were from the 

COPDGene study. The malignant cases were confirmed through the COPDGene Lung 

Cancer Registry while the benign cases were designated benign after at least 2 years of 

stability on follow-up. This cohort of 55 nodules was divided into a training set 

consisting of 50 nodules and a testing set of 5 nodules. The training set consists of 18 

malignant nodules and 32 benign nodules. The remaining five nodules, 2 malignant and 3 

benign, were held separately to provide a blinded test set. 

3.3.1.1 Demographics 

The 20 malignant and 35 benign high CT resolution nodules acquired from 55 

participants were nicely balanced in terms of demographics (see Table 1). The ages, race, 

proportion of females, and pack-years are consistent between the malignant and benign 

groups (p>0.05). While there were a larger percentage of participants without COPD in 

the benign cohort (p<0.001), the distribution of other stages of COPD were nearly equal. 

Additionally, the lobar locations of the nodules were similarly distributed between 

malignant and benign cases, with a preference for the upper lobes. 

3.3.1.2 Nodule Size 

The 50 training cases ranged in nodule diameter from 4 – 30 mm, with a median 

of 10.7 mm. The training cohort of malignant nodules tended to be larger as measured by 

radiologists (median = 13.7 mm, 4 -30 mm for malignant, median = 8.6 mm, 5 – 21 mm 

for benign, p=0.005). The 5 test cases ranged in nodule diameter from 5 – 14 mm, with a 
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median of 7 mm. The malignant test nodules had diameters of 12 and 14 mm, and the 3 

benign test nodules ranged from 5 – 7 mm, with a median of 6.5 mm. The size summary 

for all 55 cases can be found in Table 1. 

3.3.1.3 CT Parameters 

NLST and COPDGene acquired research CT data with very different goals in 

mind, causing some diversity in the scan parameters as recorded in Table 2. NLST, 

targeting annual screening for lung cancer, developed a low-dose protocol (tube current-

time product of 40-80 mAs) to minimize participant exposure to ionizing radiation. The 

14 low dose CT scans from the NLST cohort were acquired from a single center site, the 

University of Iowa, on a Philips Mx8000, Siemens Sensation 64, or Siemens Sensation 

16 CT machine. While the NLST protocol specified a slice reconstruction interval of 1.0-

2.5mm, additional high resolution reconstructions ranging from 0.6-1.3mm were made at 

our institution and used in this study [4]. Reconstructions were performed with B 

(Philips) or B30f (Siemens) kernels. 

The imaging protocol for COPDGene was developed for higher resolution lung 

imaging to best characterize emphysema, air trapping and airway wall remodeling from 

the COPD disease process [42]. The 41 high dose CT scans (tube current-time product of 

200 mAs) from the COPDGene subcohort were collected from Brigham and Women’s 

Hospital, Columbia University Medical Center, Morehouse School of Medicine, National 

Jewish Health, and the University of Iowa. Reconstructions were performed with B, 

B31f, B35f, or Standard kernel for Philips, Siemens, and GE respectively, with slice 

thicknesses between 0.6 – 0.9 mm. 

3.3.2 Clinical Cohort 

From 835 potential cases identified through pathology and radiology reports, 199 

(109 malignant and 90 benign) were eligible given the criteria of (a) solitary lung nodule 

(5-30mm) and (b) true-benign or primary lung cancer confirmed by pathology or two 
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year stability. Further histologic breakdown of the malignant diagnosis consisted of 71 

adenocarcinomas, 27 squamous cell carcinomas, and 11 other less common malignant 

subtypes. In the benign cohort there were 49 histoplasmosis, 14 sarcoidosis, and 27 other 

less common benign subtypes (Figure 3). The 199-case cohort was divided into separate 

training (n=133) and testing (n=66) sets with balanced diagnoses of 55% malignant and 

45% benign. 

3.3.2.1 Demographics 

For the 199 participants, there was a statistical difference in the age (p<0.0001), 

BMI (27.3±5.6, 31.8±9.0, p=0.00034), sex (p=0.0034), and pack-years (p<0.0001) 

between malignant and benign cases. COPD Gold stage was also statistically significant 

between the malignant and benign cases (p<0.0001), with a larger percentage of 

participants without COPD in the benign group. Nodule lobar location was found to be 

Figure 3. Distribution of malignant and benign diagnoses for the clinical cohort with 

lower CT resolution. Abbreviations include non-small cell lung cancer 

(NSCLC), indeterminate granulomatous inflammation (IGI), inflammatory 

myofibroblastic tumor (IMFT), mycobacterium tuberculosis (M-TB), and 

pulmonary hyalinizing granuloma (PHG). 
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significant (p=0.04), with a larger percentage of malignant nodules in the upper lobes 

compared to the benign nodules. Race was not statistically significant between the two 

classes. These characteristics are summarized in Table 1. 

3.3.2.2 Nodule Size 

There was also a statistically significant difference between the size of the 

nodules in each diagnosis group (Table 1, p<0.0001). The malignant nodules had an 

average maximum diameter of 18.5±2.4mm, whereas the benign nodules had an average 

maximum diameter of 13.7±6.0mm. The primary reason for this size disparity rises from 

the method of CT scan collection. To ensure the most accurate diagnostic information, 

the CT scan closest to the time of histologic confirmation with the nodule size remaining 

under 30mm was selected. Due to malignant nodules’ more aggressive growth rate, it is 

likely the scan selection procedure led to a bias in the size of the nodules. 

3.3.2.3 CT Parameters 

A variety of scanner protocols were utilized in the 199 acquired cases (Table 2). 

Four CT manufacturers (Siemens (162), GE (15), Philips (2), and Toshiba (20)) and 18 

CT models were used. The most common models were: Siemens SOMATOM Definition 

(71), Siemens Sensation 16 (46), Sensation Biograph 40 (15), and Toshiba Aquilion (20). 

The reconstruction kernels were divided categorically into standard (163), soft (2), sharp 

(7), standard without beam hardening correction (11), iterative (6), and Toshiba standard 

(10) (detailed representation of kernel types in Table A 1). Using these machines, several 

protocols were used, including 115 Chest CT with and without contrast, 20 CT: Chest, 

Abdomen, Pelvis, 7 CT Angiography, 45 External CT scans, and 12 PET/CT scans. The 

scan parameters had an average tube voltage of 118 kVp and average tube current of 414 

mA. Slice thickness ranged from 1.0-6.0mm (average of 3.3mm), and 184 scans used 

contrast. There was no statistical difference between diagnosis groups for tube voltage, 

current, or slice thickness.  
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Table 1. Comparison of demographics between research CT (high resolution) and clinical 

CT (lower resolution) cohorts. Similar age distributions and pack years can be 

seen across the two cohorts, with both benign groups having fewer pack-years 

than the malignant groups. The benign groups also have a greater proportion 

of individuals without COPD. Also noted is the increased nodule size in the 

malignant groups. 

Table 2. Comparison of scanner parameters between research CT (high resolution) and 

clinical CT (lower resolution) cohorts. While similar kilovoltage and current 

averages are seen, there is greater diversity seen in these metrics in the clinical 

cohort. Additionally, the clinical CT scans are much thicker than the research 

CT scans. 
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3.4 Discussion and Conclusions 

With these two cohorts, the two goals of this work – a dedicated research, lung 

quantification tool and a clinically-useful nodule prediction tool – can be designed. For 

the research cohort, a collection of low and high dose CT scans with thin slice 

reconstructions was acquired to provide a more uniform dataset while still including 

opportunities for variation in scan protocol for robust feature identification. 

Although an ideal clinical cohort would contain non-contrast, low dose CT scans 

only, as this is the protocol that was approved for lung cancer screening [10], the Iowa 

lung cancer screening program is still in development. As a surrogate, we sought to 

collect scans with wide variability in scan parameters, such as voltage, exposure, 

reconstruction kernel, and scanner models and manufacturers, in order to identify features 

that are more robust to protocol variability. 
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CHAPTER IV 

CAD DEVELOPMENT 

Computer-aided diagnosis (CAD) tools use a training set with known outcomes or 

diagnoses to select a set of pertinent features, as described in 2.4 Computer-Aided 

Diagnosis Tools. From the features in the training set, a classifier learns to generate a 

prediction for a new case of unknown outcome or diagnosis. In this chapter, the 

development of the research-driven, lung quantification tool is described in 4.1 Research 

Cohort. The modifications to the research-driven CAD tool for application to the clinical 

cohort are described in 4.2 Clinical Cohort. 

4.1 Research Cohort 

Described in 3.3.1 Research Cohort, the research cohort consisted of 50 training 

and 5 test subjects. The 50 training cases were used to develop the CAD modules shown 

in Figure 4, including: Segmentation, Feature Extraction, Feature Selection, and 

Classification. 

4.1.1 Methods 

For the research cohort with high CT resolution, each of the 50 training and 5 test 

subjects had a region of interest (ROI) defined (Figure 4, Segmentation). The ROI was 

selected within the CT data to include the solitary pulmonary nodule and immediate 

surrounding parenchyma. The amount of parenchyma included in the ROI was roughly 

proportional to the size of the nodule. Each ROI was manually segmented by a single 

user (J.U.) to label the individual voxels of the ROI as nodule, surrounding parenchyma, 

or invalid tissue. Voxels marked as invalid tissue included chest wall and blood vessels; 

these voxels were not used in feature extraction. 
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4.1.1.1 Feature Extraction 

Voxels labeled as parenchyma and nodule were used in the extraction of four 

classes of features (Figure 4, Feature Extraction): intensity, shape, border, and texture. 

Histogram features such as mean, minimum, and maximum intensity (in Hounsfield 

Units, HU), as well as measures of heterogeneity such as entropy and kurtosis were 

extracted from the nodule and parenchyma voxels separately. Shape characteristics such 

as sphericity and features comparing the surface of the nodule to a sphere of equivalent 

volume were extracted using the nodule mask. The size of the nodule was also calculated 

using the RECIST maximum diameter [41] and the effective radius, the radius of a sphere 

of equivalent volume of the nodule. 

These four classes of features are described in greater detail in [1]; however, some 

key features unique to this CAD approach are summarized here, including texture and 

border features. For the texture features, 272 three-dimensional (3D) texture features 

were extracted from the nodule and parenchyma using Laws’ Texture Energy Measures 

(TEM) [43]. Laws’ TEMs interrogate the grey-scale images by looking for patterns in 

different gradients. In two-dimensional (2D) applications, five 5-element vectors 

describing levels, edges, spots, waves, and ripples are convolved to form 25 2D 5x5 

kernels. These kernels locate a different texture type in each dimension. By convolving 

the original 5-element vectors with the 2D kernels, 125 3D kernels were generated. These 

3D kernels were convolved with each ROI to create texture volumes which were 

normalized and combined to form 34 rotationally-invariant 3D TEMs [2]. From these 

TEMs, the mean, variance, kurtosis, and skewness of the nodule and parenchyma were 

extracted.  

The border was analyzed by extending the rubber band straightening transform 

(RBST), introduced by Sahiner [44], so the nodule is straightened from its centroid. This 

shift in the straightening origin provides less reliance on the segmentation of the nodule, 

as the nodule’s centroid is more consistent across varying segmentations. This is 
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illustrated with 12 nodules segmented by three users in [2], where the mean centroid 

difference was 0.45±0.41mm. The axial slice of the ROI containing the centroid was 

selected, and the distance between the centroid and the closest bounding box edge was 

computed and determined to be the ray length. Rays were cast from the centroid toward 

the edge of the bounding box radially, resulting in 360 rays of uniform length, each 

representing a single row in the straightened image. From the straightened image, the 

nodule’s border definition was assessed based on the intensity rate of change along the 

nodule-parenchyma interface [2]. A list of equations for less common features can be 

found in Table A 3, and a full list of features extracted by the research CAD tool can be 

found in Table A 4. 

4.1.1.2 Feature Selection and Classification 

In total, the feature extraction module computes 304 nodule and nodule-

associated parenchymal features from the ROI. These features were then reduced through 

statistical analysis and feature selection (Figure 4, Classification). A statistical analysis 

module was created to determine which features were statistically different between the 

malignant and benign cases. Each feature was tested for normality using the Jarque-Bera 

normality test. Additionally, the variances for each feature were tested for equality. If the 

feature followed a normal distribution and the variances for the malignant and benign 

groups were equal, a two-sample t-test for equal variances was performed. If the feature 

followed a normal distribution but did not have equal variances between the two groups, 

a two-sample unequal variances t-test was used. Finally, if the normality test showed the 

feature distribution was not normal, the nonparametric Wilcoxon Rank Sum test was 

used. A feature with a p-value less than 0.05 was determined to be statistically significant 

[1, 2]. This statistical testing was used to reduce the number of features used in feature 

selection in order to reduce computation time while ensuring meaningful features were 

included in analysis. 
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To determine which of the significant features should be used for classification, 

stepwise forward selection was used. A framework was developed for optimizing feature 

selection when a small number of ROIs were available in an effort to reduce both 

performance and selection biases. The performance of the selected features at each step 

was estimated using leave-one-case-out cross-validation on 49 cases, with the 50th case 

completely left out of training and testing (Figure 5). This was repeated so every case was 

completely removed from the process. Majority voting was then used to select the best 

feature set at each stage of stepwise forward selection [2]. Features were added until the 

best combination of features is found, with the total number of features equivalent to 1 

feature for every 10 regions of interest to prevent over-fitting [45]; with 50 ROIs, features 

were added until 5 features were selected or until performance was not improved with the 

addition of more features. An artificial neural network (ANN), the structure of which is 

illustrated in (Figure 4, Classification) was used for classification, using a leave-one-out 

cross-validation method to estimate performance. Due to the random initialization of 

weights during training of the ANN, this was repeated ten times to better approximate the 

classifier’s performance. Classification using the features selected was also performed 

using a linear discriminant analysis (LDA) classifier; due to the deterministic nature of 

LDA, the leave-one-out cross-validation method was performed once [2]. 

Four feature selection and classification trials were designed to investigate the 

impact of including different types of features and classifiers (Figure 6). These trials 

include: nodule and parenchyma features (N+P) and nodule only features (N) with an 

ANN and a LDA classifier. 

4.1.1.3 Independent Test Cohort 

In addition to testing with a leave-one-case-out method, the developed 

classification approaches were tested using the independent test dataset consisting 5 

COPDGene cases (2 malignant and 3 benign). As these cases were collected after training 
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and validation of the first 50 cases had been performed, this dataset represented a truly 

blinded testing set with which to ensure overfitting had not occurred. 

4.1.1.4 Classification Evaluation 

The accuracy, sensitivity, specificity, and the standard deviations of each measure 

were computed by averaging the leave-one-case-out cross-validation results from 10 

trials with each ANN classifier. For both ANN and LDA classifiers, performance was 

evaluated through ROC analysis in which the area under the ROC curve (AUC) was 

obtained. Additional performance measures of positive predictive value (PPV) and 

negative predictive value (NPV) were also computed. Classifier ROC curves were 

compared using the Delong method to assess for differences in performances [46]. 

Predicted classification probabilities were averaged over the 10 trials for comparisons of 

ANN performance. All statistical comparisons were two-sided and assessed for 

significance at the 5% level. 

4.1.2 Results 

4.1.2.1 Statistical Analysis of Features 

Statistical analysis of the 304 features (159 nodule, 145 parenchymal) found 53 

statistically significant predictors of malignancy (p<0.05). In summary, the significant 

predictors incorporated features from both the nodule and the surrounding parenchyma:  

• Eleven intensity features - nodule mean, median, and minimum intensities, 

nodule variance, nodule kurtosis, nodule skewness, parenchyma mean and 

median intensities, parenchyma variance, parenchyma entropy, and 

parenchyma kurtosis.  

• Two shape features – sphericity (the ratio of surface area to the volume of 

the nodule) and the range of the variation between the nodule’s boundary 

and the sphere of equivalent volume. 
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• Two size measures – the effective radius (the radius of a sphere of 

equivalent volume) and the RECIST maximum diameter [32].  

• Four border features – the mean and standard deviation of the border’s 

width in physical space, the mean of the border’s width in pixel space, and 

the mean intensity change across the border. 

• Thirty-four 3D nodule texture kurtosis features. 

Additionally, 26 parenchymal texture variance features were near significant 

(p<0.1). 

Comparatively, when only the nodule features were considered, 49 features 

returned as significant: 

• Six intensity features – nodule mean, median, and minimum intensities, 

nodule variance, nodule kurtosis, and nodule skewness. 

• Two shape features – sphericity and the range of variation between the 

nodule’s boundary and the sphere of equivalent volume. 

• Two size measures – the effective radius and the RECIST maximum 

diameter.  

• Five border features – the mean and standard deviation of the border’s 

width in physical and pixel space and the mean intensity change across the 

border. 

• Thirty-four nodule texture kurtosis features. 

4.1.2.2 Classification 

We ran four trials to test our hypothesis and found that utilizing QCT features 

from the surrounding parenchyma improve performance of a CAD tool in determining 

the malignancy of a pulmonary nodule. The summary of features selected by our 

modified stepwise feature selection approach and classifier performances of these four 

trials (ANN and LDA with N and N+P features) can be seen in Table 3 and Table 4. 
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From the subset of 53 statistically significant nodule and parenchyma features, the 

features chosen by stepwise forward selection for the N+P ANN classifier are shown in 

Table 3, along with the performance of the classifier using leave-one-case-out cross-

validation. Likewise, the features selected for classification from the 49-feature subset for 

the nodule only, N, are also shown in Table 3. For the N+P ANN classifier, only 4 

features were selected when up to 5 could be used to maintain the 1 feature per 10 cases 

rule of thumb. In this instance, performance was not improved with the addition of a fifth 

feature. In both the N and N+P trials, the nodule’s texture kurtosis played a major role in 

classification. Interestingly, in the N+P classifier, the parenchymal variance of HU was 

selected first, outperforming all other features used independently. 

Box plots for these four features selected by the N+P ANN are shown in Figure 8. 

In the nodule’s texture kurtosis features, larger variances are observed in the malignant 

nodules. Similarly, the malignant nodules had greater variance in parenchyma intensity 

values; this was expected due to spiculation and angiogenesis in the surrounding 

parenchyma. Finally, while the malignant nodules had more dense minimum intensities, 

the variance in HU was larger in benign nodules. 

Inclusion of parenchyma features improved classifier performance in both the 

ANN and LDA over classifiers utilizing nodule features alone; comparisons of the ROC 

curves for these classification methods are shown in Figure 7. Looking at the ANN 

classifiers, the classifier incorporating parenchyma features in addition to nodule features 

resulted in an AUC of 0.913 whereas the classifier constructed solely from nodule 

features had an AUC of 0.882. This difference is not statistically significant (p=0.55), 

although the modest sample size limits power to detect small difference. Similarly, in the 

LDA comparison, the N+P classifier outperformed the N classifier (0.821 vs 0.574, 

p<0.01). For both N and N+P classifiers, the AUCs were significantly higher for the 

ANN classifiers compared to the LDA classifiers (N: p<0.01, N+P: p<0.01). Testing on 

the independent cohort showed the classifiers did not suffer from overfitting. The N+P 
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ANN had an accuracy of 80% (4/5), sensitivity of 100% (2/2), and specificity of 67% 

(2/3). The N classifier had even better blinded performance, with an accuracy of 96% 

(4.8/5), 100% sensitivity, and a specificity of 93% (2.8/3). The LDA blinded tests 

performed worse with an accuracy (sensitivity, specificity) of 60% (50%, 67%) for the 

N+P LDA and 60% (0%, 100%) for the N LDA. Additional performance metrics can be 

seen in Table 4. 

4.1.3 Conclusion 

Existing CAD tools have focused primarily on characteristics derived from the 

nodule and may be challenged by early detected lesions due to the limited number of CT 

voxels within the lung nodule. To overcome this obstacle, nodule-associated parenchymal 

features were incorporated. By utilizing these nodule and parenchyma features and by 

incorporating data collected using a dataset with a diverse range of scanning protocols, 

we have developed a robust classification tool. Our comparison of classifiers found that 

the ANN trained with both nodule and parenchymal features trended toward increased 

performance in accuracy, sensitivity, PPV, NPV, and AUC when compared to 

performance using nodule feature alone despite reliance on fewer features. This N+P 

classifier relied on nodule minimum intensity, parenchyma variance in intensity, and two 

3D nodule kurtosis texture features. The inclusion of parenchyma features and improved 

performance of the CAD tool supports our hypothesis that valuable information is present 

within the parenchyma and can be captured from parenchymal features. 
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Figure 4. Flowchart of the computer-aided diagnosis tool. The region of interest 

containing the nodule and surrounding parenchyma is labeled as nodule or 

parenchyma (A. Segmentation). In B. Feature Extraction, over 300 features 

are extracted from these two areas. Finally, the feature set is reduced and 

the selected features are used to train the neural network classifier (C. 

Classification), labeling a nodule as likely malignant or likely benign. 
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Figure 5. Feature Selection protocol. After a first-wave statistical analysis to identify 

statistically significant features, the modified Stepwise forward selection with 

majority voting was used to select up to floor(N/10) features, where N is the 

total number of cases in the cohort. For each iteration of stepwise forward 

selection, one case is left completely out of the internal loop, where accuracy 

approximations are computed for each subset of features being tested. After 

acquiring accuracy approximations for all possible subsets for each set of 49 

(N-1) subcohorts, the feature set with the highest approximate accuracy across 

all subcohorts is selected [2]. 
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Figure 6. Four trials exploring the impact of various regions and classifiers were 

designed. (a) N+P builds an ANN classifier from nodule (N) and parenchyma 

features (P) , whereas (b) builds an ANN classifier from nodule features (N) 

alone. (c) and (d) explores the impact of using a LDA classifier on the N+P 

and N feature sets. 
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Figure 7. ROC curves for the ANN (a) and LDA (b) classifiers. The ROC curves 

generated from the ANN classifiers show better performance compared to the 

LDA classifiers. This is supported by the AUC values seen in Table 3 and 

Table 4. 
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Table 3. Summary of performance measures for the artificial neural network (ANN) 

classifications. Due to the random initialization of the ANNs during training, 

performance is reported in percent as the mean ± the standard deviation over 

the 10 trials. The positive predictive value (PPV), negative predictive value 

(NPV) and the area under the ROC curve (AUC) are also reported. 
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Table 4. Summary of performance measures for the linear discriminant analysis (LDA) 

classifications. The accuracy, sensitivity, specificity, PPV, NPV, and the 

AUC are reported. 
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4.2 Clinical Cohort 

4.2.1 Rationale 

With the increase in classifier performance in the research cohort when nodule 

and parenchyma features were utilized, we sought to modify the research-driven lung 

quantification CAD tool in order to develop our clinically-focused, lung cancer screening 

tool. Our clinical cohort was much larger (n=199 vs. n=50) and more varied in terms of 

CT scanner protocol (Table 2). Additionally, the clinical cohort had much thicker CT 

slice thicknesses, causing reduced resolution. To develop a robust clinical CAD tool, 

several modifications were implemented in the feature extraction, feature selection, and 

classification modules of the CAD tool (Figure 9). 

Figure 8. Box plots of features selected by the research CAD tool constructed using 

nodule and parenchyma features (N+P). Four features were selected: (a) 

nodule minimum intensity, (b) parenchyma variance, and (c-d) 2 3D nodule 

kurtosis texture features. 
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4.2.2 Methods 

As discussed in 3.3.2 Clinical Cohort, the 199 retrospectively collected cases 

were randomly divided into a 133-case training set and a 66-case testing set. The training 

set was used for feature selection and training of the classifiers, and the testing set was 

used as a blind test sample to gauge and compare performances of the trained classifiers. 

4.2.2.1 Feature Extraction 

The research cohort was collected from two tightly-controlled clinical trials. As a 

result, the ages, sexes, and smoking histories of the malignant and benign cases were 

similar. In the clinical cohort, there is much greater inter- and intra- class variability in 

risk factors such as smoking history and age (Table 1). As a result, trials incorporating 

these clinical risk factors were performed (N+P+R), as well as trials exploring the impact 

of the nodule and parenchyma QCT features alone (N+P). 

Due to the variability of slice thickness within the cohort (range: 1.0-6.0mm, 

median: 3.0mm), we hypothesized the two-dimensional implementation of Laws’ TEM 

would perform better than the three-dimensional Laws’ TEMs. While the 3D Laws’ 

TEMs were significant in the research cohort, the slice thicknesses were more uniform, 

providing similar volumes over which to compute the textures. In the clinical cohort, the 

3D kernels are applied to a variety of voxel sizes due to the variance in the z-plane (1.0-

6.0mm), and thus increasing the amount of both intra- and inter- class texture variability. 

To better isolate inter-class variability, the 2D Laws’ TEMs were applied to the centroid 

slice of the nodule’s ROI. The range in voxel size in the x- and y- planes was 0.55-

0.98mm, illustrating a more standardized area over which to compute texture. The 

centroid was computed from the segmentation during border analysis with the RBST; the 

slice containing the centroid was also identified and Laws’ 2D TEMs were extracted 

from it in a similar manner as described in 4.1.1.1 Feature Extraction. From both the 

nodule and parenchyma regions, the mean, variance, kurtosis, and skewness for each of 
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the 14 2D TEMs were computed, resulting in the computation of 112 texture features. A 

complete list of features can be found in Table A 5. 

4.2.2.2 Feature Selection 

In the research cohort, a leave-one-case-out majority voting framework was 

developed to select the features for use in classification in a way that minimized the 

amount of bias introduced while allowing all cases to be used for classification. While 

valuable for the smaller research cohort of 50 cases, this process was too time-intensive 

to be performed in the larger, more diverse clinical cohort. The ability to divide the 

clinical cohort into training and testing sets also made the majority voting framework 

unnecessary. 

Collaborations with colleagues (Sarah Bell and Dr. Brian Smith) in the 

Department of Biostatistics led to a least absolute shrinkage and selection operator (lasso) 

penalized logistic regression model (R, www.r-project.org) method to select features 

[47]. In lasso-penalized logistic regression, the number of variables is limited by the 

introduction of a λ penalty term. The larger the value of λ, the more variables allowed in 

the model; the smaller the λ value, the fewer variables selected. Essentially, λ controls 

how many of the variables in a standard logistic regression formula have coefficients of 

zero. To determine the value of λ that provided the highest average AUC, 1,000 iterations 

of 10-fold cross-validation were employed using the training set. As the selection of this 

λ determined which features received zero coefficients, the features with non-zero 

coefficients are those selected for classification. 

4.2.2.3 Classification 

The features selected through lasso-penalized logistic regression (LR) were also 

implemented with ANN and LDA classifiers. These three classifiers (LR, ANN, and 

LDA) were trained using the training set, and performance was evaluated using the 

blinded testing set. 

http://www.r-project.org/
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Two trials were performed: N+P, in which the CAD relied solely on the nodule 

and parenchyma QCT features, and N+P+R, which included risk factors such as age, sex, 

smoking history, and nodule lobe location in addition to QCT features. These two trials 

processed through the three classifiers resulted in six models (Figure 10). Performance 

was assessed through accuracy, sensitivity, specificity, PPV, NPV, and AUC of the 

testing set. The AUCs of the training set were compared to the testing set to ensure 

overfitting had not occurred to maintain generalizability. 

4.2.3 Results 

Six models were developed while testing the CAD performance on the clinical 

cohort: N+P for LR, ANN, and LDA, and N+P+R for LR, ANN, and LDA (Figure 10). 

Selected features and summaries of classifier performances can be seen in Table 5 and 

Table 6. In both N+P and N+P+R trials, the LR classifier performed better than the other 

classifiers. Additionally, the selection of parenchyma features in both N+P and N+P+R 

trials illustrate the inclusion of parenchyma features adds value to the CAD tool. 

4.2.3.1 Feature Selection 

Prior to feature selection, the scan parameters including contrast use, slice 

thickness, voltage, current, and exposure were examined for statistical differences 

between malignant and benign cases. No significant association was present between 

these parameters and the nodules’ diagnoses.  

Using lasso-penalized logistic regression, parenchyma features contributed 

greatly. When risk factors were incorporated, the lobe location, age, sex, and pack years 

played a significant role in classification. In both N+P+R and N+P trials, nodule entropy, 

parenchyma mean intensity, and 2D nodule skewness textures were selected. The box 

plots for these features between malignant and benign nodules are shown in Figure 11. Of 

importance, the parenchyma mean intensity is less dense for malignant nodules compared 

to benign nodules. This could suggest the presence of lung diseases such as emphysema, 
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which is associated with lung cancer. When QCT features alone were used, the 

parenchyma played a more prominent role, with both the parenchyma mean and 

minimum intensity being selected. 

4.2.3.2 Classification 

The classifier performances can be seen in Table 6. Models constructed with risk 

factors (N+P+R) outperformed those constructed from QCT features alone (N+P). Across 

classifiers, the performances were very similar; however, the models constructed with the 

LR classifiers slightly outperformed the others (N+P testing AUC: 0.68 (LR) vs. 0.66 

(ANN), 0.68 (LDA); N+P+R testing AUC: 0.81 (LR) vs. 0.76 (ANN), 0.76 (LDA)). 

4.2.4 Conclusion 

The best overall model was the N+P+R LR model, which incorporated nodule and 

parenchyma intensity measures, shape characteristics, and nodule textures. The accuracy 

of this model on the testing cohort was 71% (47/66) with an AUC of 0.81. An additional 

benefit of this model was the lack of size as a feature. As a size bias is present in our 

clinical dataset, the lack of size as a feature is an indicator that several stronger features 

better separate the classes. In general, the N+P+R trials performed better compared to the 

N+P trials. However, evidence of overfitting is present for the ANN N+P+R model. The 

training AUC value was nearly perfect (0.97) while the testing AUC was substantially 

lower (0.76). 

The best model constructed from QCT features only was the N+P LR model with 

an AUC of 0.68. This CAD tool incorporated the size feature of effective radius. When 

size was eliminated as a feature, the training AUC dropped slightly to 0.76 (from 0.79 

with size), and the testing AUC also dropped from 0.69 with size to 0.58 without size 

features (Table A 8). Additional N+P and N+P+R classifiers constructed with different 

feature subgroups (2D vs. 3D textures) were performed (Table A 7 and Table A 8). 
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Similar performance results were achieved for N+P and N+P+R using 2D textures vs. 2D 

and 3D textures or 3D textures alone. 
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Figure 9. Clinical modifications implemented to the CAD tool include: the use of 2D 

Laws’ TEMs and risk factors in (B) Feature Extraction, a new feature 

selection method in (C) Classification, as well as the separation of training 

and testing sets. Finally, three classifiers were explored including ANN, LR, 

and LDA. 
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Figure 10. A total of six CAD models were developed. (a) and (b) illustrate the use of 

logistic regression (LR) for trials built using nodule and parenchyma 

features alone (N+P) and nodule, parenchyma, and risk factors (N+P+R). 

(c) and (d) show the N+P and N+P+R trials using an artificial neural 

network (ANN). Finally, (e) and (f) show the N+P and N+P+R trials 

constructed with linear discriminant analysis (LDA). 
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Table 5. Features selected by the least absolute shrinkage and selection operator (lasso) 

feature selection method. The nodule texture and parenchyma and nodule 

intensity are important features selected by lasso. 

Table 6. Summary of performance measures for the six CAD models of the clinical 

cohort. Three classifiers were explored: logistic regression (LR), artificial 

neural network (ANN), and linear discriminant analysis (LDA). Due to 

random initialization of the neural networks during training, performance is 

reported as the mean ± standard deviation over the 10 trials. The area under 

the ROC curve (AUC) for the training set is reported, as well as the AUC, 

accuracy, sensitivity, specificity, positive predictive value (PPV) , and 

negative predictive value (NPV) for the testing set. 
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Figure 11. Box plots for clinical features common between the nodule and parenchyma 

(N+P) and the nodule, parenchyma, and risk factor (N+P+R) CAD trials. 

Features include: (a) nodule entropy, (b) parenchyma mean intensity, and (c-

d) two 2D nodule skewness texture features. 
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4.3 Discussion 

From the feature selection process in the research cohort, 5 of the 53 significant 

features (p<0.05) were parenchymal features, while another 26 were near significance 

(p<0.1). These observations support the hypothesis that inclusion of features from the 

surrounding parenchyma can aid in the classification of malignant and benign nodules. In 

the clinical cohort several parenchymal features, including parenchyma mean and 

minimum intensity, were selected by the N+P and N+P+R classifiers. 

Comparing the research and clinical CAD tools, there are several similarities in 

the features selected. Both CAD tools utilized nodule textures; while the research CAD 

incorporated 3D textures, the clinical CAD benefited from the modification to 2D 

textures. Additional work comparing the effects of utilizing 2D vs. 3D trials was 

conducted with the clinical cohort (Table A 7 and Table A 8). The performances gained 

by utilizing 3D Laws’ TEM features were small for N+P (3D testing AUC: 0.69 vs. 2D 

testing AUC: 0.68). For N+P+R, the performance with 2D and 3D textures were 

equivalent (2D and 3D testing AUC: 0.81); however, the CAD utilizing 3D textures 

relied on a size feature. The benefits of the 2D textures extend beyond equal 

performances. The 2D Laws’ TEMs require less computation time than the 3D Laws’ 

TEMs, accelerating the processing time of each nodule through the CAD tool. 

The parenchymal features’ influence on classification is also important in regards 

to the size of lung tumors for which the CAD tool was developed. The CAD tool was 

developed to aid in the classification of nodules (maximum diameter of 30mm). For small 

pulmonary nodules, especially those <10mm, the number of voxels from which nodule 

features can be computed through CT data is limited. By showing the parenchymal 

features contribute to diagnosis, the number of voxels that can be used in feature 

extraction is increased. Additionally, inclusion of parenchymal features quantifies the 

reaction of the nodule to its surroundings. The significance of these features further 

shows that by examining the nodule alone, valuable classification data is being ignored.  
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While a statistically significant size bias exists between the malignant and benign 

nodules in both cohorts (3.3 Results), neither of the size features (RECIST maximum 

diameter and effective radius) were selected for classification in either the research CAD 

or the clinical N+P+R CAD, suggesting there are stronger predictors of malignancy 

present in QCT features beyond the inherent size differences. This is important as the 

majority of nodules identified in CT screening programs will be small after the first CT 

scan. This first CT screening scan, also called the prevalence time point, identifies 

nodules which have been developing and growing for some time as well as newly formed 

nodules. In the research cohort, the majority (38/50) of nodules were detected in this 

prevalence time point, which accounts for the greater differences in size between the 

malignant nodules and the benign nodules, which tend to have slower rates of growth. In 

subsequent scans, also called incidence scans, newly formed nodules will be the primary 

target; these nodules are not as prone to the differences in size due to the smaller amount 

of time for growth. The lack of size features selected by the CAD tool for classification 

indicates a robustness regardless of whether a prevalence or incidence time point is used. 

Additionally, the most valuable CAD tool will facilitate early diagnosis of CT-identified 

nodules without requiring longitudinal follow-up imaging and growth pattern data. 

While the research cohort presented a moderate amount of variability in terms of 

dose and manufacturer, the clinical cohort highlights the extensiveness of the feature 

extraction module. Despite the challenges presented by this clinical cohort, including 

diverse scan parameters, predominately contrast enhanced scans, and greater variability 

in demographics and risk factors, the clinical CAD tool was able to identify several 

robust QCT features, including parenchyma intensity measures and 2D Laws’ TEMs. 

Classifier performance was improved with incorporation of risk factors; the inclusion of 

risk factors in the decision-making process would serve as a better mimic for a second 

reader as the physicians also take these factors into account. 
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Both CAD tools developed in this section benefited from the inclusion of 

parenchymal features. For the research cohort, the best classifier was the ANN 

constructed with nodule and parenchyma features (N+P). The clinical CAD tool that 

yielded best results was the LR classifier that incorporated risk factors as well as nodule 

and parenchyma features (N+P+R). 
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CHAPTER V 

PARENCHYMAL RING EXPLORATION 

We have developed and tested CAD tools that utilize QCT features derived from 

the surrounding lung parenchyma for both our research and clinical cohorts, completing 

Aim 1 and demonstrating added benefit with the inclusion of parenchymal features. For 

Aim 2, we sought to determine the optimal amount of lung parenchyma surrounding a 

nodule to maximize the CAD tools’ performance.  

5.1 Rationale 

The results of Aim 1 support our hypothesis that the parenchyma provides 

meaningful information in the classification of lung nodules. In order to further explore 

the impact of including the parenchyma in the CAD tool, a systematic approach for 

isolating and quantifying varying amounts of parenchyma around a nodule was required. 

This section describes this approach and how it was applied in both the research and 

clinical cohorts. 

5.2 Research Cohort 

As with the development of the CAD tool, the research cohort was used for the 

development of our systematic approach to determine the optimal amount of parenchyma 

to use. 

5.2.1 Methods 

An additional module was developed and added to the CAD tool pipeline. This 

preprocessing module takes in the valid parenchyma masks (based roughly on the size of 

the nodule) and crops them into the desired amount of parenchyma to be used by the 

4.1.1.1 Feature Extraction module. 
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5.2.1.1 Systematic Parenchyma Selection Approach 

A systematic approach was developed, as shown in Figure 12, to generate 

parenchyma masks that are proportionally related to the size of the nodule. To do this, the 

maximum nodule diameter was determined from the three-dimensional nodule mask. 

Next, percentages of the nodule diameter were computed, consisting of 0%, 10%, 20%, 

30%, 40%, and 50% of the length of the diameter, in millimeters. Voxels within these 

distances from the border of the nodule were selected to be part of the parenchymal 

masks. Two dimensional slices of these differing parenchyma masks can be seen in 

Figure 13, including the composite image of the six parenchyma masks overlapped in 

order to compare the amount of parenchyma used for each mask. 

 

Figure 12. Parenchyma Mask Development. From the region of interest, two-dimensional 

slice shown in (a), the nodule region is segmented, shown in white (b). The 

maximum diameter for the nodule is determined, shown by the blue line in (b), 

and percentages of the diameter are computed (c). In (d), the valid parenchyma 

voxels, in white, that are less than 10% length of the diameter from the nodule 

border, indicated by blue lines, are included in the final parenchyma mask, (e). 

(d) and (e) are then repeated for 0%, 20%, 30%, 40%, and 50% of the length 

of the diameter, generating 6 parenchyma masks. 
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5.2.1.2 Optimal Ring Identification 

Upon creation of the six parenchyma masks, the 50 research nodules were 

processed through the CAD tool optimized in 4.1.1.2 Feature Selection and 

Classification. Each parenchyma mask served as a separate trial, resulting in six 

classifiers. The number of significant features identified through statistical analysis, the 

features selected for classification, and the performance of the CAD tool were examined 

and compared between the six classifiers. The five-case testing set was processed through 

the six classifiers to ensure overfitting had not occurred. 

Figure 13. A two-dimensional slice of a region of interest, showing the varying 

amounts of parenchyma used. (a) shows the total valid parenchyma of the 

region of interest. (b), (c), and (d) on the top row show the parenchyma 

within 0%, 10%, and 20% of the maximum diameter length from the 

nodule’s border, respectively. Similarly, (e), (f), and (g) show the voxels 

within 30%, 40%, and 50% of the maximum diameter length from the 

nodule’s border. (h) shows the six parenchyma masks layered to compare 

the different parenchyma masks. 
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5.2.1.3 Isolating the Parenchymal Signal Source 

Upon identification of the optimal amount of parenchyma for inclusion in the 

CAD tool, the parenchyma mask selected was explored for the source of the signal. In 

order to discover whether it is the volume of parenchyma included or the volume as well 

as its proximity to the nodule that is most important in improving CAD performance, an 

additional parenchyma mask, the peel mask, was constructed. The inner mask, the 10% 

parenchyma mask, was subtracted from the outer parenchymal mask one size larger 

(limited by the 50% mask) than the optimal parenchymal mask identified in 5.2.1.2 

Optimal Ring Identification. This process leads to the generation of a peel mask, designed 

to remove the local effects of the nodule in order to assess the importance of proximity of 

the parenchyma to the nodule. An example of this process is shown in Figure 14, where 

30% was the optimal ring, resulting in 40% being selected as the outer parenchymal 

mask. 

Parenchyma features from this peel mask were extracted, along with nodule 

features, and the nodule and peel features were processed through feature selection and 

Figure 14. Construction of peel mask. (a) the larger parenchyma mask (in white), in this 

illustration the 40% mask, is selected for the outer bounds of the 

parenchyma mask. The parenchyma mask to be removed (b, also in white), 

the 10% mask, is subtracted from (a), leaving the outer peel of parenchyma 

(c). The nodule volume is shown in grey in (a)-(c). 
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the ANN classifier. Performance was assessed through accuracy, sensitivity, specificity, 

and AUC, as well as performance on the blinded testing set. 

5.2.1.4 Global Indicators of Disease 

In addition to determining the source of the signal in the parenchyma mask, global 

features were included to determine whether imaging data captured within the same lobe 

and/or lung contain meaningful information related to nodule diagnosis. Measures 

including lobar and lung mean and standard deviation intensity, tissue volume, air 

volume, and emphysema measures such as percent emphysema (percent of voxels < -950 

HU on inspiratory imaging) and percent gas trapping (percent of voxels < -856 HU on 

expiratory imaging) were extracted through Apollo Software (VIDA Diagnostics, Inc., 

Coralville, IA). A complete list of global features can be found in Table A 6. 

Upon identification of the optimal parenchyma mask, these 54 global features 

were included in the CAD tool for feature selection and classification (see 4.1.1.2 

Feature Selection and Classification). Assessment of CAD performance measures 

included AUC, accuracy, sensitivity, specificity, PPV, and NPV and comparisons to the 

N, N+P, and N+Optimal Percent CAD tool. Classifier ROC curves were compared using 

the Delong method to assess for differences in performances [46]. Predicted classification 

probabilities were averaged over the 10 trials for comparisons of ANN performance. All 

statistical comparisons were two-sided and assessed for significance at the 5% level. 

5.2.2 Results 

The 55 research cases were processed through the parenchyma preprocessing step 

to generate the six parenchyma masks based on nodule size. Using the 50-case training 

set, each set of parenchyma masks were processed through the CAD tool, resulting in 6 

classifiers. The 10% mask trial had 5 cases whose parenchyma masks were empty due to 

10% of the nodule diameter being sub-voxel. These cases were excluded from feature 

selection and classification, thus this cohort is not directly comparable to the other 
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percentage masks. The 5-case testing set was used to verify the classifiers did not suffer 

from over-fitting. 

5.2.2.1 Optimal Ring Identification 

The number of significant features and performance of the six classifiers were 

compared to identify the optimal amount of parenchyma to use for nodule classification. 

As seen in Figure 15, as the amount of parenchyma increased, the number of statistically 

significant features increased until the amount of parenchyma exceeded 30%. At this 

point, the number of parenchymal features decreased.  

Upon completion of the stepwise forward selection with majority voting, the most 

commonly selected features for the six classifiers included: parenchyma variance, 

parenchyma entropy, nodule variance, absolute difference in range between the nodule 

boundary and the equivalent volume sphere, and the standard deviation of the border 

width. The 10% mask selected 3 features for classification before the accuracy did not 

improve with additional features. All other classifiers selected five features. 

Classification performances of the CAD tools ranged from 89.8% (44.9/50) to 

93.2% (46.6/50), with the maximum classifier performance occurring for the 30% mask 

with the size feature of effective radius (Table 7). Excluding size as a feature, the best 

performing mask was the 50% mask with an accuracy of 92% (46/50); however, the 20% 

and 40% masks had similar classifier performances of 91.0-91.6% (45.5-45.8/50) and 

AUCs of 0.86. Additionally, these classifiers do not greatly vary from the N+P classifier 

(accuracy of 91.6% (45.8/50)). While the performance is not improved, the use of a 

systematic approach for exploring the parenchyma is preferred in order to minimize the 

amount of variability introduced by subjective decisions. 

Looking at the overall trends (Figure 16), there is a global trend for the 

performance of the classifiers to stabilize after 3-4 features are included in classification; 

the addition of more features does not improve accuracy. However, the 30% mask with 
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size drastically differs, with the classifier performance continuing to increase as more 

features are included in analysis; additionally, the 50% mask does not suffer from this 

effect as greatly as the other affected masks. 

Improved performance in these masks is also seen in the blind testing set. While 

the 30% with size and 50% masks had 100% accuracy on the test cases, the 20% had an 

accuracy of 80% (1/2 malignant and 3/3 benign) and the 40% mask had an average 

accuracy of 94% (1.68/2 malignant and 3.3 benign). The 10% performance was 

challenged due to two benign nodules having empty parenchyma masks; therefore, the 

accuracy was 60% (2/2 malignant and 1/3 benign). 

While the increased number of significant features, the use of parenchyma 

features in classification, and the steady increase in classifier performance of the 30% 

mask shows promise, its use of size as a feature in classification introduces limitations in 

the CAD’s applicability to smaller, incidence nodules in lung cancer screening. 

Therefore, the 50% parenchyma mask was selected as the ideal percent of parenchyma to 

include due to its systematic approach of isolating parenchyma from the valid 

parenchyma mask and its slightly improved performance over the other percentages. 

5.2.2.2 Isolating the Parenchymal Signal Source 

Upon the selection of the 50% mask as the optimal percentage of parenchyma to 

include, the process outlined in 5.2.1.3 Isolating the Parenchymal Signal Source was 

performed using the 50% mask as the outer mask. 

Compared to the 50% mask, which had 78 significant features, the (50-10)% peel 

mask had 95 significant features including 6 nodule intensity, 5 parenchymal intensity, 2 

shape, 2 size, 3 border, 34 nodule texture, and 43 parenchymal texture features. Despite 

the increase in significant features, the features appear to be weaker separators of 

malignancy. Feature selection chose 2 parenchyma skewness textures, 1 shape feature, 1 

parenchyma intensity feature, and 1 nodule intensity feature. The AUC for the 
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N+(50-10)% trial was 0.92, an improvement compared to the AUC of 0.86 for the 

N+50% trial; however, the accuracy of this classifier was 90.1%, reduced from the 

accuracy of the N+50% trial at 92.0%. Additionally, poor performance on the 

independent cohort (accuracy of 24% (0/2 malignant and 1.2/3 benign)) suggests 

overfitting occurred. 

5.2.2.3 Global Indicators of Disease 

The nodule and parenchyma features extracted using the N+50% CAD were 

coupled with the global features, resulting in a N+50%+G ANN trial. The features 

selected are shown in Table 8 and box plots are shown in Figure 17. Additional 

comparisons of features selected can be seen in Table A 10. The parenchyma entropy and 

two features from the lobe containing the nodule were selected for classification. The 

parenchyma entropy was lower in the benign nodules, indicating less randomness within 

the parenchyma of these nodules. Similarly, the intensity of the lobe containing the 

nodule had a lower standard deviation for benign nodules. 

The N+50%+G CAD tool performed very well, with an AUC of 0.94 (Figure 18). 

The N+50%+G CAD tool performed better compared to the N and N+P CAD tools 

developed in 4.1 Research Cohort, with AUCs of 0.88 and 0.91, respectively. While not a 

statistically significant improvement (smallest p=0.17 for N vs. N+50%+G), the modest 

sample size limits the power to detect small differences. Results of blinded testing 

showed modest performance of 60% accuracy (1/2 malignant and 2/3 benign). The 

optimized N+50%+G CAD tool shows a trend toward increased performance in all 

performance metrics. 
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Figure 15. Statistical features from parenchymal investigation. The number of significant 

features increases as the amount of parenchyma increases, with the maximum 

number of significant features identified when the 30% mask is used. 

Figure 16. Classifier performances as the number of features included is increased. In (a), 

the accuracies of the lower percentage classifiers tend to level off after 3 

features are used for classification. However, for the higher percentage 

classifiers (b), the only percentage that continues to increase with more 

features is the 30%+size mask. The 40% and 50% masks’ performances level 

off after 4 features, respectively. 



www.manaraa.com

54 

 

  

Table 7. Summary of performance measures, averaged over ten trials, for the ANN 

classification of the research cohort using varying amounts of parenchyma. 

The positive predictive value (PPV), negative predictive value (NPV), and the 

area under the ROC curve (AUC) are also reported. Note: N+10% is out of 45 

cases. 
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Figure 17. Boxplot for N+50%+G features selected during feature selection. Malignant 

ROIs have greater entropy (c) in the surrounding parenchyma as well as more 

variance in the lobe (d) compared to benign nodules. 
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Table 8. Summary of performance measures, averaged over ten trials, for the ANN 

classification of the research cohort using N, N+P, N+50%, N+(50-10)%, and 

N+50%+G features. The positive predictive value (PPV), negative predictive 

value (NPV), and the area under the ROC curve (AUC) are also reported. 



www.manaraa.com

57 

 

 

  

Figure 18. ROC curves for N, N+P, N+50%, and N+50%+G CAD tools. The 

N+50%+G ROC curve (blue) shows better performance than the N (black), 

N+P (red), or N+50% (purple) ROC curves. 
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5.3 Clinical Cohort 

Based on the observations from the research cohort, the framework for identifying 

the optimal amount of parenchyma to use in the clinical cohort was developed. The CAD 

tools were trained with the 133-case training set and the performances assessed using the 

blinded 66-case testing set, as described in 3.3.2 Clinical Cohort. 

5.3.1 Methods 

Using the procedure described in 5.2.1.2 Optimal Ring Identification, the clinical 

cases’ valid parenchyma masks were sent through the preprocessing module, resulting in 

each nodule having 6 parenchyma masks. As the research cohort illustrated the 30% and 

50% mask contain the most promise, the other nodule masks were left out of analysis. 

For the 10% mask, this was out of practicality. In the research cohort, five nodules were 

excluded due to 10% of their diameter being sub-voxel. In the clinical cohort, where the 

voxels are larger, this was a bigger issue. The nodule only (0%) mask was included for 

comparison to a nodule-only clinical CAD tool. 

The 0%, 30%, and 50% masks were processed through the optimized clinical 

CAD tool (4.2.3.2 Classification), resulting in 3 classifiers. The features selected and the 

performances of these classifiers were assessed to determine the optimal amount of 

parenchyma to include in the final clinical CAD tool. 

5.3.2 Results 

Using the 133-case training set and the 66-case testing set, 0%, 30% and 50% 

masks were processed through the N+P+R LR clinical CAD tool. The features selected 

through lasso and the performances of these CAD tools can be seen in Table 9. Similar to 

the research CAD tool, while the 50% mask modestly outperformed the other trials, the 

use of a systematic approach to determine the amount of parenchyma to include is an 

important procedure. Further, CAD performance using any amount of parenchyma is 

improved over the nodule only (N+0%+R) CAD tool. Box plots showing the trend in 
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features selected by the 50% mask are shown in Figure 19. The means, standard 

deviations, and p-values for the quantitative features selected by this CAD tool can be 

found in Table A 11. 
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Table 9. Summary of performance measures for the clinical cohort using varying 

amounts of parenchyma. The N+P+R features selected by lasso-penalized 

logistic regression are shown, and the area under the ROC curve (AUC) for 

the training and testing set are also reported. 
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Figure 19. Boxplots for N+50%+R features selected during lasso feature selection. 

Nodule entropy (a) and texture nodule skewness (d) are higher for malignant 

nodules than benign nodules, whereas the benign nodules have larger texture 

nodule variance (e) and parenchyma median intensity (b). 
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5.4 Discussion 

For the research cohort, the optimized research-driven CAD tool is the N+50%+G 

ANN, constructed from nodule features, parenchyma features from the 50% mask, and 

global features from the lobe containing the nodule. Similarly, the optimal clinically 

focused, lung cancer screening CAD tool is the N+50%+R LR model. This CAD tool, 

constructed through lasso-penalized logistic regression, relies on features from the 

nodule, 50% parenchyma mask, and clinical risk factors. 

As we saw in the development of the CAD tools, the presence of size bias had an 

impact on this study. The research 30% mask performed very well, but relied heavily on 

size. When size was removed as a feature, the performance of the CAD tool suffered. 

However, the 50% mask performed strongly without size as feature, and, when global 

features were included, improved its performance further in nodule classification. The 

addition of more parenchyma illustrates a clear trend to overcoming size bias and 

providing useful information to the CAD tool. 

Querying the parenchyma rings for the source of the signal yielded interesting 

results. While the (50-10)% peel mask resulted in an increase in statistically significant 

features compared to the 50% parenchyma mask, the accuracy and generalizability during 

classification was lower, suggesting that, while more features are significant, the 50% 

mask contains stronger sources of signal. Hence, the interaction between the nodule and 

parenchyma is important. 

These results also demonstrate the benefits of using a systematic approach to 

determine the amount of parenchyma to include. By relating the amount of surrounding 

parenchyma directly to the size of the nodule, the number of significant parenchyma 

features increased compared to the number of significant features used with all the valid 

parenchyma within the ROI. 

In addition to explore the source of signal in the research CAD tool, we sought to 

determine whether the scan variability was influencing the performance of the clinical 
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CAD tool. We removed the 15 non-contrast CT scans from the training and testing sets, 

resulting in 123 contrast-enhanced training cases and 60 testing cases. The N+50%+R 

CAD tool selected similar features and had equivalent performance (training AUC: 0.95, 

testing AUC: 0.79, see Table A 9). This provides strong evidence that our CAD tool is 

selecting features robust to variations in protocol. 

For Aim 2, we sought to determine the impact of including parenchymal features 

by optimizing the amount of parenchyma surrounding a nodule to include in the CAD 

tools. For the research-driven CAD tool, the N+50%+G ANN was found to be the 

optimal CAD tool. Not only does this CAD tool utilize a systematic approach for the 

inclusion of a standard amount of parenchyma, lobar measures of lung disease are also 

considered. For the clinical CAD tool, the 50% mask also rose as the ideal amount of 

parenchyma with the N+50%+R LR being selected as the optimal CAD tool. 
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CHAPTER VI 

IMPLEMENTING A THREE-CLASS APPROACH 

For Aim 3, we sought to explore the preliminary clinical impact of a CAD tool 

that includes parenchymal features. One way of further investigating the clinical impact 

of such a CAD tool was the development and implementation of a three-class approach. 

6.1 Rationale 

According to the National Comprehensive Cancer Network Guidelines, solid 

nodules greater than 6mm require either: multiple repeated CT imaging, PET/CT 

imaging, or an invasive procedure to determine presence of malignancy [12]. The long-

term motivation for this project is to develop a CAD tool that will reduce the number of 

follow-up procedures, including repeated imaging studies, invasive biopsies, and 

resections, than would be required based on CT imaging alone by increasing the 

confidence of the radiologist in the CAD predicted diagnosis of a nodule. However, even 

with the high accuracy of the CAD tools we have developed thus far, a small chance of 

misclassification is likely to undermine the trust of the clinician in the CAD tool. 

Therefore, in a clinical setting, a three-stage diagnosis decision tool may be of greater 

value by dividing the cases into: (1) a definite malignant class, where the patient would 

be sent straight to intervention, (2) a definite benign class, where the patient would 

continue to receive low-dose annual CT screening, and (3) an indeterminate class who 

would undergo the standard-of-care follow-up. 

6.2 Research Cohort 

The ANN classifier used by the optimized research-driven CAD tool outputs a 

numeric value, which is then subjected to thresholding in order to determine the binary 

class decision. Taking advantage of these numeric outputs, we explored implementing a 

double-threshold, three-classification scheme. 
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6.2.1 Methods 

Using the ANN classifier outputs from the optimized research CAD tool 

(N+50%+G), two thresholds were selected to divide the classification space into 

malignant, benign, and indeterminate. First, the ANN outputs of 10 trials were averaged. 

The thresholds were selected based on the averaged ANN output values of the most 

extreme misclassified malignant (lower threshold) and benign (upper threshold) case. A 

buffer of one standard deviation of each class was incorporated to allow for more extreme 

values to be seen. Based on these thresholds, every nodule above the upper threshold (the 

most extreme benign value + one standard deviation of benign cases) was correctly 

labeled as malignant, and every nodule below the lower threshold (the most extreme 

malignant value - one standard deviation of malignant cases) was correctly labeled as 

benign. Those cases falling in between thresholds received the label of indeterminate. In 

a clinical setting, the CAD tool would recommend patients with these nodules undergo 

follow-up using the NCCN Guidelines, while those in the definite malignant category 

would go directly to treatment and those falling in the definite benign category would 

continue receiving low-dose annual CT screening. After the thresholds were determined, 

they were applied in a similar manner to the 5-case blinded testing set to assess the 

generalizability of such a technique. 

6.2.2 Results 

The two threshold approach was applied to the optimized research-driven CAD 

tool, which was constructed with nodule features, parenchyma features from the 50% 

ring, and global features (N+50%+G) (Figure 20). When a traditional two-class approach 

was applied to the averaged ANN outputs, the sensitivity of the classifier (the accuracy of 

the malignant category) was 88.9% (16/18 malignant nodules correctly identified). The 

specificity was 96.9% (31/32 benign nodules correctly identified). Clinically, this would 
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have resulted in 3 nodules that were misclassified: 2 malignant nodules that would have 

been missed and 1 benign nodule that would have undergone further follow-up. 

Applying the 2 threshold/3 class approach to the N+50%+G ANN outputs, the 

thresholds fell at 0 and 0.67 (Figure 20). For the 18 malignant cases, 15 were assigned to 

the definite malignant category; the remaining 3 malignant cases and all 32 benign cases 

were labeled as indeterminate. Using this three class approach would have sent 15 

patients with malignant nodules straight to treatment, reducing the number of follow-up 

procedures by 
50-35

50
 ×100= 30%. 

There was one extreme malignant case which resulted in the lower threshold 

being set to 0. This misclassified malignant case was such that the ANN output value 

(before thresholding into binary classes) falls near 0, which can be interpreted as a 

strongly benign classification. This COPDGene participant verbally confirmed they had 

lung cancer but refused to join the Lung Cancer Registry, removing the ability to confirm 

malignancy through medical records and tissue diagnosis. This participant is now 

deceased (20 months after the CT scan utilized in this study was acquired), with cause of 

death reported as COPD and lung cancer. Without pathology, there is doubt as to whether 

this CT-certified nodule is the cause of the participant’s lung cancer, or if this nodule was 

a benign process and a second malignant lesion developed after Phase I of COPDGene. 

When this case was removed from the threshold placement decision, the lower 

threshold was raised to 0.11, narrowing the indeterminate band (Figure 21). Again, 15 

malignant cases were assigned to the definite malignant category. However, 27 of the 32 

benign cases were labeled as definite benign. This trial resulted in 7 nodules falling in the 

indeterminate category, drastically reducing the number of cases referred to follow-up in 

clinic by 
49-7

49
 ×100= 85.7%.  

The 5 blinded cases were a challenging test for generalizability on the three-class 

approach. When binary classification was performed, one malignant and one benign 

nodule were misclassified. With the three-class approach build using all 50 cases, the 
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benign nodule was still misclassified, but the previously missed malignant nodule fell in 

the indeterminate category with the other two benign nodules (Figure 22). However, 

using the 49-case thresholds (0.11 and 0.67), these two nodules are again misclassified 

(Figure 23). The performance on the blinded test set highlights the limitations of post-

classification thresholding and supports further development of this approach. 

6.3 Clinical Cohort 

In a similar manner to the research cohort, a two threshold/three class approach 

was applied to the clinical cohort. However, modifications were made due to the 

independence of the training and testing sets. 

6.3.1 Methods 

The predictive outcomes from the optimized clinical CAD tool (the LR-trained 

N+50%+R) were collected for the training and testing set. Using the training set, the most 

extreme misclassified malignant and benign nodules were identified. The misclassified 

malignant nodule was used to establish the lower threshold, while the most extreme 

misclassified benign nodule was used to determine the upper threshold value. Similarly to 

the research cohort, a buffer of one standard deviation of variability per class was added 

to each threshold. 

These thresholds were applied to the testing set’s predictive outcomes from the 

optimized clinical CAD tool. The number of nodules correctly falling in the definite 

malignant and definite benign nodules were reported for the training and testing sets, and 

the percentage reduction of cases to follow-up was computed. The number of nodules 

assigned to the indeterminate category was also determined. Of utmost importance, 

misclassified cases (malignant cases falling in the definite benign and vice versa) for the 

testing set were identified, as this was strongly undesirable and would result in additional 

testing when none was needed, or worse, a missed cancer. 
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6.3.2 Results 

The two threshold approach was applied to the optimized clinical CAD tool, 

which was constructed with nodule features and parenchyma features from the 50% 

parenchyma mask, including two-dimensional textures and risk factors (N+50%+R) 

(Figure 24). When a traditional two-class approach was applied to the LR predictive 

outcome (threshold at 0.5), the sensitivity of the classifier (the accuracy of the malignant 

category) was 86.1% (62/72 malignant nodules correctly identified) for the training set 

and 75.6% (28/37) for the testing set. The specificity was 81.9% (50/61 benign nodules 

correctly identified) for the training set and 69.0% (20/29) for the testing set. Clinically, 

this would have resulted in 18 nodules from the test set that were misclassified: 9 

malignant nodules that would have been missed and 9 benign nodules that would have 

undergone further follow-up. 

Applying the 2 threshold/3 class approach to the training set’s N+50%+R LR 

outputs, the thresholds fell at 0.117 and 0.979 (Figure 24). These thresholds were then 

applied to the testing set of 66 nodules (Figure 25). For the 37 malignant cases, 3 were 

assigned to the definite malignant category; 34 malignant nodules were labeled as 

indeterminate, and no nodules were misclassified as benign. For the 29 benign cases, 5 

were assigned to the definite benign category, 24 nodules were labeled as indeterminate, 

and, again, no benign nodules were misclassified as malignant. Using this three class 

approach would have sent 3 patients with malignant nodules straight to treatment and 5 

patients with benign nodules to annual screening, reducing the number of follow-up 

procedures by 
66-58

66
 ×100= 12.1%. While this is a modest reduction, no malignant 

nodules were missed and no patients would have undergone treatment for benign 

nodules. 
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6.4 Discussion 

The use of a three-class, two-threshold approach shows promise in its ability to 

reduce the number of unnecessary imaging and invasive procedures and the risks 

associated with these. As we see with the clinical cohort, post-classification thresholding 

using the training data is sensitive enough to achieve perfect classification within the 

definite malignant and benign categories; however its specificity could be improved to 

further reduce the number of follow-up procedures. The small research test set, however, 

lacked this sensitivity, misclassifying one benign and one malignant nodule. Therefore, a 

classification schema integrating a cost function in order to assign a nodule into one of 

the three classes would be advantageous to pursue. 
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Figure 20. The neural network values for the N+50%+G experiment. The values of the 

network are plotted against the case number; correct diagnosis is indicated by 

the color of the point. The threshold(s) is(are) shown in black and magenta. (a) 

shows a single threshold/two class division. (b) shows the two threshold/three 

class division. Due to case 11 (see blue arrow in (b)), the lower threshold is set 

at 0. 
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Figure 21. The neural network values for the N+50%+G experiment, excluding case 11. 

Upon its removal, the indeterminate class is much narrower, containing 7 (2 

malignant, 5 benign) cases. 
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Figure 22. Research test cases for (a) binary thresholding and (b) three-class partitioning 

using the thresholds from all 50 cases. One benign nodule is misclassified in 

both (a) and (b), and one malignant nodule is misclassified in (a) and placed in 

the indeterminate category in (b). 
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Figure 23. Research test cases for (a) binary thresholding and (b) three-class partitioning 

using the thresholds from the 49 cases. One malignant and one benign nodule 

are misclassified in both (a) and (b). 
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Figure 24. The logistic regression (LR) values for the N+50%+R experiment. The values 

of the LR are plotted against the training cases; correct diagnosis is indicated 

by the color of the point. The threshold(s) is(are) shown in black and magenta. 

(a) shows a single threshold/two class division. (b) shows the two 

threshold/three class division. 
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Figure 25. The logistic regression (LR) values for the N+50%+R experiment. The LR 

values are plotted against the testing cases, and the thresholds from the 

training set are applied in (b). No misclassifications occur. 
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CHAPTER VII 

LONGITUDINAL CLINICAL IMPACT EXPLORATION 

7.1 Rationale 

According to the NCCN Guidelines, the detection of a pulmonary nodule in a 

low-dose Chest CT scan frequently results in repeated CT imaging at some interval, often 

1-3 months, to assess nodule growth and change in appearance. These characteristics are 

subjective, relying on the reader’s impressions to determine whether the nodule appears 

stable and continued CT monitoring is sufficient, or if the nodule requires further 

invasive evaluation to determine whether malignancy is present. In Aims 1 and 2, we 

identified QCT features that are useful for the classification of pulmonary nodules. For 

this study, we seek to explore the potential clinical impacts of the CAD tools 

incorporating parenchymal features by assessing the stability of nodule prediction. 

7.2 Research Cohort 

The longitudinal trends in nodule prediction for the research-driven CAD tool 

were investigated using a subset of the research cohort with more than one CT scan 

captured during NLST or COPDGene. In order to improve nodule follow-up, a logical 

trend in nodule prediction is desired, from a prediction of benign or indeterminate, 

progressing to more malignant as the disease develops and the nodule invades the 

surrounding parenchyma. 

7.2.1 Methods 

From the research cohort, 9 participants (3 malignant, 6 benign) with multiple CT 

scans present from the NIH trials were identified. NLST participants had up to three CT 

scans (one prevalence and two incidence scans), depending on when a nodule was 

identified. COPDGene participants without lung cancer had up to two CT scans (Phase I 

and Phase II 5 years after the initial timepoint). All timepoint CT scans were processed 
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through the optimized research CAD tool (N+50%+G); the nodules and the surrounding 

parenchyma were segmented, their 50% parenchyma masks generated, and the features 

used in classification (see Table 8) were extracted. These scans were then classified using 

a leave-one-case-out approach. From the original research cohort of 50 cases, the 

participant being classified in this longitudinal trial was left out of training; hence, 49 

cases were used to train the ANN. After training, all CT scans of the left-out participant 

were processed through the trained classifier. This leaving-out procedure was repeated 

for all 9 subjects. Each training and testing iteration was repeated 10 times to obtain a 

better estimate of performance due to the random initialization of the ANN. 

After acquiring ANN output estimates, the thresholds from 6.2.2 Results for two 

class and three class classification were applied to the average value for each nodule. The 

trends in CAD diagnoses were plotted and visually assessed for illogical diagnosis 

transitions (malignant to benign). 

7.2.2 Results 

Of the 9 participants, 6 (3 malignant, 3 benign) were NLST participants, and 3 

(benign) were from COPDGene. Each participant had two CT scans present; the NLST 

participants had one year between time points whereas the COPDGene participants had 

five years between timepoints. For the NLST nodules, the CT scan closest to the 

diagnosis date had been used in the development of the research CAD tool. For the 

COPDGene cases, the Phase I scan had been used in the CAD development process. 

When the two-class approach was used, one of the malignant nodules was initially 

diagnosed as malignant, and later diagnosed as benign (Figure 26).This case had a similar 

trend during the three class, two threshold approach; it was first diagnosed as malignant 

and later diagnosed as indeterminate for the 50-case threshold (lower threshold of 0, 

Figure 26) and benign for the 49-case threshold (lower threshold of 0.115, Figure 27). 
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The remainder of the cases show logical transitions from benign to indeterminate to 

malignant or remain stable in their predicted classification. 

7.3 Clinical Cohort 

7.3.1 Methods 

From the clinical cohort, a subcohort of patients diagnosed with either a 

malignant or benign pulmonary nodule with multiple retrospective CT scans was 

randomly identified. Their CT scans were collected and processed through the optimized 

clinical CAD tool (N+50%+R, see list of features in Table 9).  

After optimized feature extraction had occurred, the nodules were processed 

through the N+50%+R LR model trained with the training set of 133. The LR predictions 

were processed through the three class, two threshold approach and the trends in nodule 

prediction were examined and compared with the radiologist impressions. 

7.3.2 Results 

From the clinical cohort, 24 patients with a solitary pulmonary nodule (12 

malignant, 12 benign) with multiple CT scans were identified. The malignant nodules 

were imaged 3.3±1.4 times on average over 1.3±1.8 years before diagnosis, and the 

benign nodules were followed for an average of 2.7±1.0 CT scans over 1.0±1.5 years. 

Figure 28 illustrates the 24 clinical cases with their actual diagnoses. Each CT 

scan has been demarcated by the radiologist’s impression of the nodule. In several cases, 

especially 9, 11, 13, and 23, variability in the radiologist’s impression is present across 

the nodule’s imaging timeline. When processed through the optimal clinical CAD tool 

(N+50%+R LR), these cases are either classified as indeterminate or show a trend from 

benign to indeterminate (Figure 29). While no nodules were classified as malignant, four 

nodules were classified as definite benign. This reduces the number of benign cases 

referred to follow-up from 12 to 8, a reduction of 33%. 
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As some of the subcohort were used for training of the LR model, those cases that 

were in the testing set were isolated and examined. These cases included 3 benign (cases 

3, 5, and 7) and 5 malignant (cases 15, 17, 18, 19, and 22). Similarly to when all 24 were 

assessed, 1 of the 3 benign nodules was classified as definite benign from the initial 

timepoint, yielding a reduction of 33% of benign cases to follow-up. 

7.4 Discussion 

In this subproject, we sought to explore the clinical impact a three-class approach 

could have on the follow-up procedure for CT-identified pulmonary nodules. By 

identifying patients with multiple CT scans in our two cohorts, we collected two 

longitudinal subcohorts with which to visualize the trends in CAD predictions. In both 

groups, the use of three classes would have eliminated repeated scanning for benign 

nodules. As most nodules identified with CT are benign, this has the potential to improve 

healthcare costs and reduce patient risks associated with invasive procedures and 

repeated imaging. 

In the research longitudinal subcohort, the tighter CT protocol allows for more 

confidence that differences seen within features and CAD predictions are due to 

physiological changes in the nodule and its surrounding parenchyma. 5 of the 6 benign 

nodules were correctly classified as definite benign within the three-class thresholding 

scheme constructed from the 49 research cases. 

In the 24-case clinical cohort, 4 of the 12 benign nodules were labeled as definite 

benign at first CT scan. The potential gains from this are undersold due to the use of a 

balanced (12 benign and 12 malignant) division of diagnoses. The NLST found 97% of 

lesions identified by CT were benign with additional follow-up. The reduction of clinical 

follow-up on 33% of these lesions would have a huge clinical benefit: reduction of 

repeated imaging, invasive biopsies and procedures, reduced patient stress, and reduced 

healthcare costs. 
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In both CAD tools, nodule size was not incorporated in the decision of nodule 

prediction. However, clinically, nodule growth is a major indication of malignancy. A 

limitation of our developed approach in the clinical cohort was the lack of transition from 

indeterminate to malignant prediction for the malignant cases. Obviously, limiting 

follow-up imaging procedures and obtaining a swift diagnosis for malignant cases is also 

very important. Modifications to the algorithm to include longitudinal change in features 

should be explored in the future to add value for this cohort. However, for the research 

subcohort, the prediction trends seen when a tighter protocol is used suggest nodule size 

may not be as important as other changes quantified. In this preliminary work, each CT 

ROI was assessed as an independent case through the clinical CAD tool. The positive 

performance on this challenging dataset shows the promise of longitudinal nodule 

classification and is worth further development by incorporating longitudinal change in 

features.  
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Figure 26. Two and three class (built with 50 cases) CAD predictions for the research 

stability subcohort. 3 malignant (orange lines) and 6 benign (green lines) cases 

are shown. Data points represent individual CT scans, with the length of the 

line indicating the time between scans. The color of the data point indicates 

the predicted CAD diagnosis: malignant and benign for the two class 

approach (a) and malignant, benign, or indeterminate for the three class 

approach (b). 

Figure 27. Two and three class (built with 49 cases) CAD predictions for the research 

stability subcohort. Four of the six benign nodules are classified as definite 

benign when the three class approach built with 49 cases (b) is used, 

compared to the three class approach when all 50 cases were used to set the 

thresholds (Figure 26). 
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Figure 28. Scan history for clinical subcohort. 12 malignant (orange lines) and 12 benign 

(green lines) cases are shown, with histology diagnosis listed. The length of 

the line represents the time from identification in CT to time of diagnosis. 

Data points represent individual CT scans, with the radiologist’s impression 

noted by color (red: malignant impression, blue: benign impression). 
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Figure 29. Scan history with CAD classification for the clinical subcohort. The CT scans 

for 24 clinical subjects were processed through the optimized N+50%+R LR 

classifier. 4 of the 12 benign nodules were classified as definite benign, 

reducing follow-up for these participants. 
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CHAPTER VIII 

CONCLUSION 

As low-dose CT screening for lung cancer becomes wide-spread, the management 

of CT-identified lung nodules will become an even greater clinical dilemma. CAD tools 

have the potential to improve CT specificity by acting as a second reader to radiologists, 

however, traditional models rely solely on nodule characters. We hypothesize that 

improvement will be seen in the quantitative CT (QCT) CAD classification of lung 

nodules by including the lung parenchyma surrounding the nodule in the region of 

interest. We explored our hypothesis through three specific aims: 

Aim 1: Develop and test a CAD tool that utilizes QCT features derived from the 

surrounding parenchyma in both a high CT resolution research cohort and a 

retrospective clinical cohort with greater variance in CT resolution and acquisition 

parameters. We developed two CAD tools: a research-driven, lung quantification tool 

and a clinically-focused, lung cancer screening tool robust to variations in protocol. Both 

CAD tools utilized parenchymal features and performed better than CAD tools trained 

solely with nodule features. 

Aim 2: Determine the impact of including parenchymal features by identifying the 

optimal amount of parenchyma surrounding a nodule to include in the CAD tool. We 

further optimized the developed CAD tools be identifying the optimal amount of 

parenchyma to assess during feature extraction. Both CAD tools benefited from including 

parenchyma within a distance of 50% of the nodule’s diameter. 

Aim 3: Explore the potential clinical impact of a CAD tool that includes 

parenchymal features in providing an early prediction of malignancy and minimizing 

follow-up imaging and procedures in the cohort with benign nodules. Two exploratory 

studies were performed. A procedure to develop a three class (definite malignant, definite 

benign, and indeterminate) approach was found to reduce the number of follow-up 
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procedures necessary through NCCN Guidelines in both the research and clinical cohorts. 

Additionally, the longitudinal analysis on a subset of nodules in each cohort showed 

potential in reducing follow-up procedures. 
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CHAPTER IX 

FUTURE WORK 

Several projects are planned in expanding this CAD tool. They vary in range from 

expanding datasets, extending feature extraction, improving classification, and 

incorporating an automated segmentation method. 

9.1 Application to Lung Cancer Screening Protocol 

At the University of Iowa Hospitals and Clinics, a preventative screening protocol 

is being designed to image those patients qualifying for lung cancer screening under 

USPSTF guidelines. These patients will consent to having their CT images and any 

resulting pathology results used for research purposes. This provides the opportunity for a 

CAD tool to be designed for a tighter controlled population and low-dose protocol by 

using the CAD modules described in this work. 

9.2 Expanded Variability of Cases 

The current dataset contains primarily solid nodules. In the future, an increased 

percentage of sub-solid nodules will be added to the training and testing datasets.  

Ground glass nodules (GGN) are defined as localized regions of increased attenuation 

through which it is possible to visualize normal pulmonary structures (parenchyma, 

airways and vessels). The category of sub-solid nodules encompasses purely GGN and 

partially solid GGN. This class of nodules present challenges in the areas of 

quantification due to some ambiguity in defining the nodule boundary. It is likely that the 

expanded parenchymal feature sets described in this thesis will be highly suited to the 

analysis of sub-solid nodules.  
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9.3 Feature Extraction Methods 

9.3.1 Rubber Band Straightening Transform 

One limitation of the current set of feature extraction scripts lies in the RBST 

function. At present, the function is suitable for nodules whose centroid lies within their 

boundaries. For nodules with great concavities or nonsolid centers, this function is unable 

to properly assess the nodule’s border, as the algorithm identifies one crossing of the 

border. Expanding this feature set would be necessary to interpret a greater variety of 

nodule types. 

9.3.2 Regional Lung Analysis 

In the research cohort, features extracted from the lobe containing the nodule 

were found to aid in classification. However, the clinical scans cannot be processed 

through Apollo due to the scan parameter limitations, including slice thickness. A module 

to look at lobar measures in the clinical cohort could improve pulmonary nodule 

prediction further. 

9.4 Feature Selection and Classification 

While lasso-penalized logistic regression was found to be the best feature 

selection and classification method for the clinical cohort, another feature selection 

method shows promise given the size of the clinical cohort. AdaBoost methods iteratively 

combine “weak” classifiers, constructed from individual features, to generate a single, 

strong classifier [48]. This is performed by iteratively increasing the influence 

misclassified cases have on the next round of classifier selection. As each classifier is 

constructed using a single feature, this serves as a feature selection tool. The training set 

would be used to train the weak classifiers and determine the optimal number of weak 

classifiers to use in the final classification schema, while the testing set would be 

available for unbiased testing. 
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9.5 Refinement of the Three-Class Approach 

The promising results from CHAPTER VI IMPLEMENTING A THREE-CLASS 

APPROACH showed the potential of the CAD tools to reduce the number of nodules sent 

for follow-up, as well as a reduction in time for patients with malignant nodules to 

undergo treatment. The current method relies on classifier outputs to determine the 

thresholds for definite malignant, definite benign, and indeterminate classes. An optimal 

approach would incorporate a cost function into the classification training phase to 

classify nodules directly into one of the three classes. 

9.6 Longitudinal Explorations 

The analysis of trends for the longitudinal dataset suggest these CAD tools could 

have considerable impact on the management of CT-identified lung nodules. By 

analyzing each participant’s CT scan as an independent ROI, the relative change in the 

nodule was left unaccounted. We predict that the incorporation of relative change 

features into the CAD tools would improve the performance of the CAD tools when 

nodules are re-imaged and the next decision in nodule management (repeat imaging, 

biopsy, or surgery) is needed. The nodule’s growth rate, change in shape (represented by 

sphericity and border assessment), and change in parenchyma texture (as the nodule 

infiltrates and influences the surrounding parenchyma) would be included as features. 

These features, as well as the features outlined in 4.1.1.1 Feature Extraction would be 

processed through feature selection and classification in order to develop a more robust 

longitudinal CAD tool. 
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APPENDIX 

Table A 1. Categorical information for binning the reconstruction kernels into six types to 

check for confounders within the cohort; none were identified. 

Category Kernels Included: 

Standard B, B30f, B30s, B31f,B31s,B40s,B41f,B41s, Standard 

Soft B20f, B20s 

Sharp B46f, B70f, B70s 

Standard without beam 

hardening correction 

FC10,FC12,FC13,FC14,FC17,FC18 

Iterative I31f, I41f 

Toshiba standard FC01, FC02, FC03 
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Table A 2. List of participants from National Lung Screening Trial (NLST) and 

COPDGene used in the research cohort. The imaging timepoint used in this 

study is indicated, with year 0, 1, or 2 for NLST participants and phase 1 or 2 

for COPDGene participants. 
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Table A 3. List of equations for less common features used 

in Feature Extraction. A complete description 

can be found in [1]. 
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Table A 4. Complete list of features extracted during research CAD 

development. 
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 Table A 5. Complete list of features extracted during clinical 

CAD development. 
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Table A 6. Global features extracted during N+50%+G 

CAD development with the research cohort. 
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Table A 7. Summary of features selected and performances for the training and 

testing sets of the clinical cohort for the QCT and risk factors 

(N+P+R). 
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Table A 8. Summary of features selected and performances for the training and 

testing sets of the clinical cohort for the QCT features (N+P). 
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Table A 9. Summary of features selected and performances for the training and testing 

sets of the clinical cohort for the N+50%+R CAD tool when contrast-

enhanced scans alone are used. 
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Table A 10. Means and standard deviations (St. Dev.) for features selected by stepwise 

feature selection for the research CAD classifiers (N, N+P, N+50%, N+(50-

10)%, and N+50%+G). 
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Table A 11. Means and standard deviations (St. Dev.) for the quantitative features 

selected by lasso-penalized logistic regression for the final clinical CAD 

classifier (N+50%+R). Two categorical variables, sex and nodule location, 

were also selected. 
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